ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 26, 2020
Accepted January 26, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Hydrothermal carbonization of oil palm trunk via taguchi method

Institute of Environmental Engineering and Management, Mehran University of Engineering and Technology, Jamshoro 76090, Sindh, Pakistan 1Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi 74800, Sindh, Pakistan 2Institute of Chemistry, University of Punjab, Lahore-54590 Punjab, Pakistan 3College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China 4Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009 Sarawak, Malaysia 5School of Engineering, RMIT University, Melbourne 3000, Australia
sumbulsaeed717@gmail.com
Korean Journal of Chemical Engineering, April 2021, 38(4), 797-806(10), 10.1007/s11814-021-0753-0
downloadDownload PDF

Abstract

Hydrothermal carbonization (HTC) and its parameters show a significant role in the quality of HTC products and the distribution of yield. The present study investigates the optimal conditions that are suitable to produce maximum yield products of solid, liquid, and gas, from HTC of oil palm trunk (OPT), by following the Taguchi method. Moreover, all the three products of HTC were analyzed using various characterizations. The optimum runs for hydrochar yield, liquid yield, and gaseous yield were run 1 (R1), run 4 (R4), and run 9 (R9), respectively. The reaction temperature was found to be the most influential parameter that affected the yield distribution during HTC, where low temperature supported solid production, intermediate temperatures favored liquid yield, and high temperature produced higher gaseous yield. Elemental analysis, H/C and O/C atomic ratios, higher heating value (HHV), and energy density values of hydrochar recommended that the HTC process has significantly converted OPT into better energy fuel. The energy densification value of hydrochar ranged between 1.28 and 1.40, which confirmed the significance of the HTC process. Two characteristic peaks from FTIR were observed at 3,430 cm?1 and 2,923 cm?1 hydrochar. SEM analysis confirmed that the porosity of hydrochar was higher than OPT after HTC. However, the major organic matter in the bio-oil traced by GC-MS analysis was acetic acid, accounting for about 59.9-71.7%, and the outlet gaseous product consisted of 0.87-9.17% CH4, 3.88-29.02% CO2, 1.07-7.89% CO, and 0.31-1.97% H2, respectively, as shown by GC-TCD.

References

Nizamuddin S, Jayakumar NS, Sahu J, Ganesan P, Bhutto AW, Mubarak NM, Korean J. Chem. Eng., 32(9), 1789 (2015)
Fan L, Sun P, Yang L, Xu Z, Han J, Korean J. Chem. Eng., 37(1), 166 (2020)
Kim SS, Tsang YF, Kwon EE, Lin KYA, Lee JC, Korean J. Chem. Eng., 36(1), 1 (2019)
Tran HN, You SJ, Chao HP, Korean J. Chem. Eng., 34(6), 1708 (2017)
Li Y, Song N, Wang K, Korean J. Chem. Eng., 36(5), 678 (2019)
Brown A, McKeogh B, Tompsett G, Lewis R, Deskins N, Timko M, Carbon, 125, 614 (2017)
Sun K, Tang J, Gong Y, Zhang H, Environ. Sci. Pol. Res., 22, 16640 (2015)
Xiao LP, Shi ZJ, Xu F, Sun RC, Bioresour. Technol., 118, 619 (2012)
Nizamuddin S, Baloch HA, Griffin GJ, Mubarak NM, Bhutto AW, Abro R, Mazari SA, Ali BS, Renew. Sust. Energ. Rev., 73, 1289 (2017)
Kong SH, Loh SK, Bachmann RT, Rahim SA, Salimon J, Renew. Sust. Energ. Rev., 39, 729 (2014)
Ismail W, Thaim TM, Rasid RA, Biomass. Bioenergy, 124, 83 (2019)
Abnisa F, Arami-Niya A, Daud WMAW, Sahu JN, Noor IM, Energy Conv. Manag., 76, 1073 (2013)
Loow YL, Wu TY, J. Environ. Manage., 216, 192 (2018)
Tang KHD, Al Qahtani HM, Environ. Develop. Sustain., 22, 4999 (2020)
Nizamuddin S, Qureshi SS, Baloch HA, Siddiqui MTH, et al., Materials, 12, 403 (2019)
Fang J, Zhan L, Ok YS, Gao B, J. Ind. Eng. Chem., 57, 15 (2018)
Kumar S, Loganathan VA, Gupta RB, Barnett MO, J. Environ. Manage., 92, 2504 (2011)
Xue YW, Gao B, Yao Y, Inyang M, Zhang M, Zimmerman AR, Ro KS, Chem. Eng. J., 200, 673 (2012)
Dai LC, Wu B, Tan FR, He MX, Wang WG, Qin H, Tang XY, Zhu QL, Pan K, Hu QC, Bioresour. Technol., 161, 327 (2014)
Hammud HH, Shmait A, Hourani N, RSC Adv., 5, 7909 (2015)
Baloch HA, Siddiqui M, Nizamuddin S, Mubarak N, Khalid M, Srinivasan M, Griffin G, Proc. Safety Environ. Prot., 137, 300 (2020)
Yuliansyah AT, Hirajima T, Kumagai S, Sasaki K, Waste. Biomass. Valor., 1, 395 (2010)
Uzun BB, Apaydin-Varol E, Ates F, Ozbay N, Putun AE, Fuel, 89(1), 176 (2010)
Arami-Niya A, Abnisa F, Sahfeeyan MS, Daud WW, Sahu JN, BioResources, 7, 0246 (2012)
Huang HJ, Yuan XZ, Zeng GM, Wang JY, Li H, Zhou CF, Pei XK, You QA, Chen LA, Fuel Process. Technol., 92(1), 147 (2011)
Zhu Z, Rosendahl L, Toor SS, Yu DH, Chen GY, Appl. Energy, 137, 183 (2015)
Baloch HA, Nizamuddin S, Siddiqui M, Riaz S, Jatoi AS, Dumbre DK, Mubarak N, Srinivasan M, Griffin G, J. Environ. Chem. Eng., 6, 5101 (2018)
Anastasakis K, Ross AB, Bioresour. Technol., 102(7), 4876 (2011)
Yan YJ, Xu J, Li TC, Ren ZW, Fuel Process. Technol., 60(2), 135 (1999)
Boocock D, Sherman K, Can. J. Chem. Eng., 63, 627 (1985)
Intani K, Latif S, Kabir AKMR, Muller J, Bioresour. Technol., 218, 541 (2016)
Siddiqui M, Nizamuddin S, Mubarak N, Shirin K, Aijaz M, Hussain M, Baloch HA, Waste. Biomass. Valor., 10, 521 (2019)
Nizamuddin S, Siddiqui MTH, Baloch HA, Mubarak NM, Griffin G, Madapusi S, Tanksale A, Environ. Sci. Pol. Res., 25, 17529 (2018)
Zhang Q, Chang J, Wang TJ, Xu Y, Energy Conv. Manag., 48(1), 87 (2007)
Gomez N, Banks SW, Nowakowski DJ, Rosas JG, Cara J, Sanchez ME, Bridgwater AV, Fuel Process. Technol., 172, 97 (2018)
Thangalazhy-Gopakumar S, Adhikari S, Ravindran H, Gupta RB, Fasina O, Tu M, Fernando SD, Bioresour. Technol., 101(21), 8389 (2010)
Liu ZG, Quek A, Hoekman SK, Balasubramanian R, Fuel, 103, 943 (2013)
Parshetti GK, Chowdhury S, Balasubramanian R, Biresour. Technol., 161, 310 (2014)
Lin HZ, Wang SR, Zhang L, Ru B, Zhou JS, Luo ZY, Chin. J. Chem. Eng., 25(2), 232 (2017)
Elaigwu SE, Greenway GM, J. Anal. Appl. Pyrol., 118, 1 (2016)
Guiotoku M, Rambo C, Hansel F, Magalhaes W, Hotza D, Mater. Lett., 63, 2707 (2009)
Zhao PT, Shen YF, Ge SF, Yoshikawa K, Energy Conv. Manag., 78, 815 (2014)
Chadwick DT, McDonnell KP, Brennan LP, Fagan CC, Everard CD, Renew. Sust. Energ. Rev., 30, 672 (2014)
Park J, Won SW, Mao J, Kwak IS, Yun YS, J. Hazard. Mater., 181(1-3), 794 (2010)
Afolabi OO, Sohail M, Thomas C, Waste. Biomass. Valor., 6, 147 (2015)
Gao Y, Wang XH, Wang J, Li XP, Cheng JJ, Yang HP, Chen HP, Energy, 58, 376 (2013)
Marx S, Chiyanzu I, Piyo N, Bioresour. Technol., 164, 177 (2014)
Kannan S, Gariepy Y, Raghavan GSV, Energy Fuels, 31(4), 4068 (2017)
Tumuluru JS, Sokhansanj S, Wright CT, Kremer T, Adv. Gas Chromatogr. Agric. Biomed. Indistrial Appl., 211 (2012).
Uemura Y, Sellappah V, Trinh TH, Hassan S, Tanoue KI, Bioresour. Technol., 243, 107 (2017)
Prins MJ, Ptasinski KJ, Janssen FJ, J. Anal. Appl. Pyrol., 77, 35 (2006)
Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, Hicks KB, Biomass. Bioenergy, 34, 67 (2010)
Huber GW, Iborra S, Corma A, Chem. Rev., 106(9), 4044 (2006)
Jindal MK, Jha MK, RSC Adv., 6, 41772 (2016)
Chen DY, Gao AJ, Cen KH, Zhang J, Cao XB, Ma ZQ, Energy Conv. Manag., 169, 228 (2018)
Bridgeman TG, Jones JM, Shield I, Williams PT, Fuel, 87(6), 844 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로