ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 10, 2020
Accepted September 1, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Solubility of ethylene in N-methyl-2-pyrrolidone: Experimental study and estimation of UNIQUAC activity model parameters

Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
s.azizi.chem@gmail.com
Korean Journal of Chemical Engineering, April 2021, 38(4), 852-861(10), 10.1007/s11814-020-0671-6
downloadDownload PDF

Abstract

The solubility of ethylene in N-methyl-2-pyrrolidone (NMP) was evaluated at different temperatures, including 278.2, 298.2, and 328.2 K, and different pressures in an experimental pressure decaying setup. The kinetic and equilibrium results were obtained for pure gas absorption. Henry…s law constants were calculated at different temperatures. Eventually, thermodynamic modeling was done using Peng Robinson equation of state (PR-EOS) and UNIQUAC activity coefficient model. The binary interaction parameters, τ12, τ21, were adjusted and optimized. Regarding the values obtained for binary interaction parameters, it was concluded that this solution has non-ideal behavior. Indeed, because of its low prediction error (3-11%), it was concluded that the correlated thermodynamic model could accurately predict the experimental data.

References

Pan Y, Jia CZ, Liu B, Zhang Z, Tong XS, Li H, Li Z, Ssebadduka R, Sun CY, Yang LY, Chen GJ, Fluid Phase Equilib., 414, 14 (2016)
Liao KS, Japip S, Lai JY, Chung TS, J. Membr. Sci., 534, 92 (2017)
Manteghian M, Safavi SMM, Mohammadi A, Chem. Eng. J., 217, 379 (2013)
Eldridge RB, Ind. Eng. Chem. Res., 32, 2208 (1993)
Wang YX, Hu ZG, Cheng YD, Zhao D, Ind. Eng. Chem. Res., 56(15), 4508 (2017)
Azizi S, Dezfuli HT, Kargari A, Peyghambarzadeh SM, Fluid Phase Equilib., 387, 190 (2015)
Wang S, Li X, Wu H, Tian Z, Xin Q, He G, Peng D, Chen S, Yin Y, Jiang Z, Energy Environ. Sci., 9, 1863 (2016)
Reine TA, Eldridge RB, Ind. Eng. Chem. Res., 44(19), 7505 (2005)
Bao Z, Chang G, Xing H, Krishna R, Ren Q, Chen B, Energy Environ. Sci., 9, 3612 (2016)
Malakhov A, Bazhenov S, Vasilevsky V, Borisov I, Ovcharova A, Bildyukevich A, Volkov V, Giorno L, Volkov A, Sep. Purif. Technol., 129, 64 (2019)
Chmelar J, Smolna K, Haskovcova K, Podivinska M, Marsalek J, Kosek J, Polymer, 59, 270 (2015)
Moura L, Darwich W, Santini CC, Gomes MFC, Chem. Eng. J., 280, 755 (2015)
Mortaheb HR, Mafi M, Mokhtarani B, Sharifi A, Mirzaei M, Khodapanah N, Ghaemmaghami F, Chem. Eng. J., 158(3), 384 (2010)
Shariati A, Florusse LJ, Peters CJ, Fluid Phase Equilib., 387, 143 (2015)
Sato Y, Hosaka N, Inomata H, Kanaka K, Fluid Phase Equilib., 344, 112 (2013)
Lee LS, Ou HJ, Hsu HF, Fluid Phase Equilib., 231(2), 221 (2005)
Cho IH, Yasuda HK, Marrero TR, J. Chem. Eng. Data, 40(1), 107 (1995)
Dojcansky J, Bafroncova S, Surovy J, Chem. Pap., 55, 71 (2001)
Nagahama K, Suzuki I, Hirata M, J. Chem. Eng. Japan, 4, 1 (1971)
Cancelas AJ, Plata MA, Bashir MA, Bartke M, Monteil V, McKenna TF, Macromol. Chem. Phys., 219, 170056 (2018)
Kumar S, Mondal MK, Korean J. Chem. Eng., 35(6), 1335 (2018)
Dashti A, Zargari F, Harami HR, Mohammadi AH, Nikfarjam Z, Korean J. Chem. Eng., 36(10), 1637 (2019)
Kitagishi A, Takizawa S, Sato Y, Inomata H, Fluid Phase Equilib., 492, 110 (2019)
Mi Y, Yao C, Zhao S, Chen G, Chem. Eng. Process.-Process Intensification, 137, 137 (2019)
Smith JM, Van Ness HC, Abbott MM, Introduction to chemical engineering thermodynamics, 7th Ed., Mc-Graw-Hill, Boston (2005).
Washburn EW, Chemistry and technology, Knovel, New York (2003).
Bohloul MR, Sadeghabadi MA, Peyghambarzadeh SM, Dehghani MR, Fluid Phase Equilib., 447, 132 (2017)
Bohloul MR, Vatani A, Peyghambarzadeh SM, Fluid Phase Equilib., 365, 106 (2014)
Azizi S, Peyghambarzadeh SM, Saremi M, Tahmasebi H, Heat Mass Transfer., 50, 1699 (2014)
Roeentan H, Azizi S, Bakeri G, Peyghambarzadeh SM, Chem. Eng. Res. Des., 117, 240 (2017)
Jaubert JN, Mutelet F, Fluid Phase Equilib., 224(2), 285 (2004)
Oba S, Suzuki S, Tanaka H, Nagahama K, Hirata M, J. Jpn. Pet. Inst., 28, 202 (1985)
Polishuk I, Wisniak J, Segura H, Chem. Eng. Sci., 55(23), 5705 (2000)
Wibawa G, Nafi MF, Permatasari A, Mustain A, Modern Appl. Sci., 9, 177 (2015)
Fateen SEK, Khalil MM, Elnabawy AO, J. Adv. Res., 4, 137 (2013)
Pu X, Lu L, Liu Y, Int. J. Chem. Eng. Appl., 8, 92 (2017)
Prausnitz JM, Lichtenthaler RN, Azevedo EG, Molecular thermodynamics of fluid phase equilibria, Pearson Education, London (1999).
Brelvi S, Ind. Eng. Chem. Process Design Dev., 21, 367 (1982)
Farajnezhad A, Afshar OA, Khansary MA, Shirazian S, Ghadiri M, Fluid Phase Equilib., 417, 181 (2016)
Poling BE, Prausnitz JM, O'connell JP, The properties of gases and liquids, Mcgraw-Hill, New York (2001).
Skjold-Jorgensen S, Kolbe B, Gmehling J, Rasmussen P, Ind. Eng. Chem. Process Design Dev., 18, 714 (1979)
Svensson H, Hulteberg C, Karlsson HT, Int. J. Greenhouse Gas Control, 17, 89 (2013)
Wu Z, Zeck S, Knapp H, Berichte der Bunsengesellschaft fur Physikalische Chemie, 89, 1009 (1985).
Shenderei ER, Ivanovskii FP, Khim Prom, 10, 91 (1963)
Renon H, Lenoir JY, Renault P, J. Chem. Eng. Data, 16, 340 (1971)
Shakhova S, Zubchenko YP, Kaplan L, Khim Prom, 49, 108 (1973)
Shenderei ER, Ivanovskii FP, Gazov. Prom., 7, 11 (1962)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로