ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 30, 2020
Accepted February 26, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Green and mild production of 5-aminolevulinic acid from algal biomass

1College of Energy, Xiamen University, Xiamen 361102, China 2Fujian Engineering and Research Centre of Clean and High-valued Technologies for Biomass, Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen 361102, China
xianhai.zeng@xmu.edu.cn
Korean Journal of Chemical Engineering, May 2021, 38(5), 899-905(7), 10.1007/s11814-021-0774-8
downloadDownload PDF

Abstract

Algal biomass was converted into 5-aminolevulinic acid (5-ALA) in five chemical steps: conversion to 5-(chloromethyl)furfural (5-CMF), ammoniation, ring-opening (photo-oxidation), reduction, and hydrolyzation. Among them, we mainly focused on the 5-CMF production and the following ammoniation. To our knowledge, the mixed solvent catalytic system of deep eutectic solvent (DES) and low concentration hydrochloric acid is the first reported for the synthesis of 5-CMF from algal biomass, providing a 24.6% 5-CMF yield at 120 oC for 5 h. Potassium phthalimide (KPI) was employed as an ammoniation reagent with superb selectivity and activity instead of conventional sodium azide (NaN3). Optimizing the experimental design, a 23.7% 5-ALA yield along with high purity (>96%) was achieved from 5-CMF, and the total 5-ALA yield was 5.8% from algal biomass. This work provides a green and mild pathway for 5- ALA production from algal biomass.

References

Douki T, Onuki J, Medeiros MH, Bechara EJ, Cadet J, Di Mascio P, Chem. Res. Toxicol., 11, 150 (1998)
Sasaki K, Watanabe M, Tanaka T, Tanaka T, Appl. Microbiol. Biotechnol., 58(1), 23 (2002)
Thompson DI, Edwards TJ, van Staden J, Plant Growth Regul., 49, 269 (2006)
Sasikala C, Ramana CV, Rao PR, Biotechnol. Prog., 10(5), 451 (1994)
Takeya H, Ueki H, Miyanari S, Shimizu T, Kojima M, J. Photochem. Photobiol. A-Chem., 94, 167 (1996)
Fukuda H, Casas A, Batlle A, Int. J. Biochem. Cell Biol., 37, 272 (2005)
Tetard MC, Vermandel M, Mordon S, Lejeune JP, Reyns N, Photodiagn. Photodyn. Ther., 11, 319 (2014)
Liu SL, Zhang GM, Li XK, Zhang J, Appl. Microbiol. Biotechnol., 98(17), 7349 (2014)
Ren J, Zhou L, Wang C, Lin C, Li Z, Zeng AP, ACS Synth. Biol., 7, 2750 (2018)
Jahn D, Febs Lett., 314, 77 (1992)
Kawakami H, Ebata T, Matsushita H, Agric. Biol. Chem., 55, 1687 (1991)
Herdeis C, Dimmerling A, Arch. Pharm., 317, 304 (1984)
Yoo CG, Zhang S, Pan X, RSC Adv., 7, 300 (2017)
Xiong C, Sun Y, Du J, Chen W, Si Z, Gao H, Tang X, Zeng X, Korean J. Chem. Eng., 35(6), 1312 (2018)
Sun Y, Xiong C, Chen H, Zeng X, Tang X, Lei T, Lin L, Korean J. Chem. Eng., 34(7), 1924 (2017)
Kim B, Yang J, Kim M, Lee JW, Bioresour. Technol., 303, 122898 (2020)
Ali M, Watson IA, Energy Technol., 4, 319 (2016)
Kim MJ, Yang JW, Kim BR, Lee JW, Korean J. Chem. Eng., 37(11), 1933 (2020)
Im H, Kim B, Lee JW, Bioresour. Technol., 193, 386 (2015)
Park J, Kim B, Chang YK, Lee JW, Bioresour. Technol., 230, 8 (2017)
Cottier L, Descotes G, Eymard L, Rapp K, Synthesis, 3, 303 (1995)
Wettstein SG, Alonso DM, Gurbuz EI, Dumesic JA, Curr. Opin. Chem. Eng., 1, 218 (2012)
Zai Y, Feng Y, Zeng X, Tang X, Sun Y, Lin L, RSC Adv., 9, 10091 (2019)
Mascal M, Nikitin EB, Angew. Chem.-Int. Edit., 47, 7924 (2008)
Mascal M, Nikitin EB, ChemSusChem, 2, 859 (2009)
Mascal M, Nikitin EB, ChemSusChem, 2, 423 (2009)
Mascal M, ACS Sustainable Chem. Eng., 7, 5588 (2019)
Mascal M, Dutta S, Green Chem., 13, 40 (2011)
Jeong HI, Park YK, Korean J. Chem. Eng., 37(7), 1212 (2020)
Jiang S, Zeng Z, Xue W, Zhang W, Zhou Z, Korean J. Chem. Eng., 37(9), 1482 (2020)
Unlu AE, Arıkaya A, Altundag A, Takac S, Korean J. Chem. Eng., 37(1), 46 (2020)
Zuo M, Li Z, Jiang Y, Tang X, Zeng X, Sun Y, Liu L, RSC Adv., 6, 27004 (2016)
Han L, Zhou Z, J. Mater. Environ. Sci., 10, 182 (2019)
Yu X, Zhou Z, Phosphorus, Sulfur, and Silicon and the Related Elements, 193, 387 (2018).
Ha HJ, Lee SK, Ha YJ, Park JW, Synth. Commun., 24, 2557 (1994)
Bodachivskyi I, Kuzhiumparambil U, Williams DBG, Chem-SusChem, 11, 642 (2018)
Bodachivskyi I, Kuzhiumparambil U, Williams DBG, Fuel Process. Technol., 195, 106159 (2019)
Zuo M, Le K, Feng Y, Xiong C, Li Z, Zeng X, Tang X, Sun Y, Lin L, Ind. Crop. Prod., 112, 18 (2018)
Yu X, Gao X, Tao R, Peng L, Catalysts, 7, 182 (2017)
Yu X, Peng L, Gao X, He L, Chen K, RSC Adv., 8, 15762 (2018)
Zhang XM, Eren NM, Kreke T, Mosier NS, Engelberth AS, Kilaz G, Bioenerg. Res., 10, 1018 (2017)
Zuo M, Jia W, Feng Y, Zeng X, Tang X, Sun Y, Lin L, Renew. Energy, 164, 23 (2020)
Le K, Zuo M, Song XQ, Zeng XH, Tang X, Sun Y, Lei TZ, Lin L, J. Chem. Technol. Biotechnol., 92(12), 2929 (2017)
Leng EW, Mao M, Peng Y, Li XM, Gong X, Zhang Y, Chemistryselect, 4, 181 (2019)
Hu L, Sun Y, Lin L, Liu SJ, Biomass Bioenerg., 47, 289 (2012)
Chen B, Xu G, Zheng Z, Wang D, Zou C, Cheng C, Ind. Crop. Prod., 129, 503 (2019)
Chang C, Deng L, Xu G, Ind. Crop. Prod., 117, 197 (2018)
Tang X, Zuo M, Li Z, Liu H, Xiong C, Zeng X, Sun Y, Hu L, Liu S, Lei T, Lin L, ChemSusChem, 10, 2696 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로