ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 26, 2020
Accepted April 4, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Recent progress on Al distribution over zeolite frameworks:Linking theories and experiments

1School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea 2Department of Chemical Engineering, Ajou University, Suwon 16499, Korea 3Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
mjpark@ajou.ac.kr
Korean Journal of Chemical Engineering, June 2021, 38(6), 1117-1128(12), 10.1007/s11814-021-0796-2
downloadDownload PDF

Abstract

The location and distribution of aluminum in zeolites is considered important in determining various properties, such as acidity and reactivity. Controlling the placement of aluminum substitution has therefore been of significant interest, and a number of studies have been conducted, including synthesis methods using either different organic structure-directing agents (OSDAs) or cationic species, and the application of dealumination as post-processing. In addition to experimental developments, computational methods have emerged as a useful tool for analyzing the effects of different types of aluminum siting on catalytic properties, especially by incorporating statistical methods. A review of recent developments and findings related to aluminum siting and its effects is presented in this work. Analysis of the thermodynamic distribution of aluminum, as well as synthetically altered distribution in different zeolite frameworks, has been discussed. Computational studies have revealed that catalytic properties are sensitive to adsorbate-dependent properties such as the size of rings and voids for the residence of aluminum, the relative distribution of acid sites, and the adsorption properties of molecules in different framework motifs. Along with the atomic scale evaluation of synthetic treatments in positioning the aluminum, cases of instrumental analysis methods and their verification with simulations is discussed, demonstrating how theories have complemented and, sometimes modified, experimental perspectives. Lastly, recent progress in incorporating machine learning techiques, its application to zeolites, and directions for future work are introduced.

References

Breck DW, in Molecular sieve zeolites-I, ACS Publications, Washington D.C. (1971).
Baerlocher C, McCusker LB, Database of zeolites, http://www.iza-structure.org/databases/ (accessed November 4, 2020).C. Baerlocher and L. B. McCusker, Database of zeolites, http:// www.iza-structure.org/databases/ (accessed November 4, 2020).C. Baerlocher and L. B. McCusker, Database of zeolites, http:// www.iza-structure.org/databases/ (accessed November 4, 2020).C. Baerlocher and L. B. McCusker, Database of zeolites, http://www.iza-structure.org/databases/ (accessed November 4, 2020).
Zhang Q, Yu J, Corma A, Adv. Mater., 2002927, 1 (2020)
Chu Y, Han B, Zheng A, Deng F, J. Phys. Chem. C., 116, 12687 (2012)
Huang Y, Dong X, Li M, Yu Y, Catal. Sci. Technol., 5, 1093 (2015)
Brandle M, Sauer J, J. Am. Chem. Soc., 120(7), 1556 (1998)
McQuarrie DA, Statistical Mechanics, 1st Ed., Harper & Row, New York (1973).
Cheung P, Bhan A, Sunley GJ, Iglesia E, Angew. Chem.-Int. Edit., 45, 1617 (2006)
Cheung P, Bhan A, Sunley GJ, Law DJ, Iglesia E, J. Catal., 245(1), 110 (2007)
Bhan A, Allian AD, Sunley GJ, Law DJ, Iglesia E, J. Am. Chem. Soc., 129(16), 4919 (2007)
Boronat M, Martinez-Sanchez C, Law D, Corma A, J. Am. Chem. Soc., 130(48), 16316 (2008)
Li Y, Yu M, Cai K, Wang M, Lv J, Howe RF, Huang S, Ma X, Phys. Chem. Chem. Phys., 22, 11374 (2020)
Jung HS, Ham H, Bae JW, Catal. Today, 339, 79 (2020)
Ham H, Jung HS, Kim HS, Kim J, Cho SJ, Lee WB, Park MJ, Bae JW, ACS Catal., 10, 5135 (2020)
Peric J, Trgo M, Medvidovic NV, Water Res., 38, 1893 (2004)
Yahiro H, Iwamoto M, Appl. Catal. A: Gen., 222(1-2), 163 (2001)
Albarracin-Suazo SC, Pagan-Torres YJ, Curet-Arana MC, J. Phys. Chem. C, 123, 16164 (2019)
Li H, Paolucci C, Khurana I, Wilcox LN, Goltl F, et al., Chem. Sci., 10, 2373 (2019)
Loewenstein W, Am. Mineral., 39, 92 (1954)
Catlow CRA, George AR, Freeman CM, Chem. Commun., 11, 1311 (1996)
Pelmenschikov AG, Paukshtis EA, Edisherashvili MO, Zhidomirov GM, J. Phys. Chem., 96, 7051 (1992)
Goncalves TJ, Plessow PN, Studt F, ChemCatChem., 11, 4368 (2019)
Zygmunt SA, Curtiss LA, Zapol P, Iton LE, J. Phys. Chem. B, 104(9), 1944 (2000)
Kessi A, Delley B, Int. J. Quantum Chem., 68, 135 (1998)
Zhou DH, Bao Y, Yang MM, He N, Yang G, J. Mol. Catal. A-Chem., 244(1-2), 11 (2006)
He M, Zhang J, Liu R, Sun X, Chen B, Catalysts, 7, 11 (2017)
Grajciar L, Arean CO, Pulido A, Nachtigall P, Phys. Chem. Chem. Phys., 12, 1497 (2010)
Zhang N, Liu C, Ma J, Li R, Jiao H, Phys. Chem. Chem. Phys., 21, 18758 (2019)
Nystrom S, Hoffman A, Hibbitts D, ACS Catal., 8, 7842 (2018)
Muraoka K, Chaikittisilp W, Okubo T, J. Am. Chem. Soc., 138(19), 6184 (2016)
Xu B, Bordiga S, Prins R, van Bokhoven JA, Appl. Catal. A: Gen., 333(2), 245 (2007)
Cui N, Guo H, Zhou J, Li L, Guo L, Hua Z, Microporous Mesoporous Mater., 306, 110411 (2020)
Park S, Biligetu T, Wang Y, Nishitoba T, Kondo JN, Yokoi T, Catal. Today, 303, 64 (2018)
Di Iorio JR, Nimlos CT, Gounder R, ACS Catal., 7, 6663 (2017)
Sastre G, Fornes V, Corma A, J. Phys. Chem. B, 106(3), 701 (2002)
Nielsen M, Hafreager A, Brogaard RY, De Wispelaere K, Falsig H, Beato P, Van Speybroeck V, Svelle S, Catal. Sci. Technol., 9, 3721 (2019)
Inagaki S, Yamada N, Nishii M, Nishi Y, Kubota Y, Microporous Mesoporous Mater., 302, 110223 (2020)
Koranyi TI, Nagy JB, J. Phys. Chem. B, 109(33), 15791 (2005)
Stanciakova K, Ensing B, Goltl F, Bulo RE, Weckhuysen BM, Go F, Bulo RE, Weckhuysen BM, ACS Catal., 9, 5119 (2019)
Sklenak S, Andrikopoulos PC, Whittleton SR, Jirglova H, Sazama P, Benco L, Bucko T, Hafner J, Sobalik Z, J. Phys. Chem. C, 117, 3958 (2013)
Sklenak S, Andrikopoulos PC, Boekfa B, Jansang B, Novakova J, Benco L, Bucko T, Hafner J, Dedecek J, Sobalik Z, J. Catal., 272(2), 262 (2010)
Kim S, Park G, Woo MH, Kwak G, Kim SK, ACS Catal., 9, 2880 (2019)
Knott BC, Nimlos CT, Robichaud DJ, Nimlos MR, Kim S, Gounder R, ACS Catal., 8, 770 (2018)
Jones AJ, Iglesia E, ACS Catal., 5, 5741 (2015)
O'Malley PJ, Dwyer J, J. Phys. Chem., 92, 3005 (1988)
Wang CM, Brogaard RY, Weckhuysen BM, Nørskov JK, Studt F, J. Phys. Chem. Lett., 5, 1516 (2014)
Boronat M, Corma A, ACS Catal., 9, 1539 (2019)
Evans JD, Coudert FX, Chem. Mater., 29, 7833 (2017)
Gu Y, Liu Z, Yu C, Gu X, Xu L, Gao Y, Ma J, J. Phys. Chem. C, 124, 9314 (2020)
Helfrecht BA, Semino R, Pireddu G, Auerbach SM, Ceriotti M, J. Chem. Phys., 151, 154112 (2019)
Ma X, Xin H, Phys. Rev. Lett., 118, 1 (2017)
Calle-Vallejo F, Martinez JI, Garcia-Lastra JM, Sautet P, Loffreda D, Angew. Chem.-Int. Edit., 53, 8316 (2014)
Xie T, Grossman JC, Phys. Rev. Lett., 120, 145301 (2018)
Gu GH, Noh J, Kim S, Back S, Ulissi Z, Jung Y, J. Phys. Chem. Lett., 11, 44 (2020)
Back S, Yoon J, Tian N, Zhong W, Tran K, Ulissi ZW, J. Phys. Chem. Lett., 10, 4401 (2019)
De S, Bartok AP, Csanyi G, Ceriotti M, Phys. Chem. Chem. Phys., 18, 13754 (2016)
Kajita S, Ohba N, Jinnouchi R, Asahi R, Sci. Rep., 7, 1 (2017)
Yoon J, Ulissi ZW, Phys. Rev. Lett., 125, 173001 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로