ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 20, 2020
Accepted January 26, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Direct synthesis of hydrogen peroxide over palladium catalysts supported on glucose-derived amorphous carbons

Department of Nano & Chemical Engineering, Kunsan National University, 558 Daehak-ro, Kunsan, Jeollabuk-do 54150, Korea
Korean Journal of Chemical Engineering, June 2021, 38(6), 1139-1148(10), 10.1007/s11814-021-0748-x
downloadDownload PDF

Abstract

Untreated and sulfonated biomass-derived amorphous carbons were prepared by the pyrolysis of D-glucose at different temperatures, followed by sulfonation. Not only the surface functional group concentration but also the structure of polyaromatic carbon sheets was significantly affected by the carbonization temperature and sulfonation. More importantly, the carbonization temperature played a crucial role in determining the size of Pd nanoparticles (NPs) on glucose-derived carbons (GCx) and thereby affected the catalytic performance of Pd/GCx for the direct synthesis of hydrogen peroxide (DSHP). The volcano-shaped dependency between the Pd NP size and the carbonization temperature of GCx agrees well with the reverse relationship between the Pd NP size and the catalytic activity of Pd/ GCx. The flexible polyaromatic carbon sheet structure of the GCx was beneficial in increasing the sulfonic acid group content on the carbon surface and, therefore, H2O2 selectivity was improved in the presence of the Pd/S-GC2 catalyst (Pd supported on the sulfonated glucose-derived carbon pyrolyzed at 723 K). However, both H2 conversion and H2O2 productivity decreased over the same catalyst, possibly due to the decreased number of active sites on the clustered or single-site Pd. Reducing the catalyst resulted in a decrease in H2O2 selectivity by significantly lowering the Pd2+/Pd0 ratio and increasing the Pd NP size. These results clearly demonstrate that fine control of the physicochemical properties of the active metal and GCx support and their synergistic combination is essential to realize an efficient Pd catalyst supported on GCx for the DSHP reaction.

References

Goor G, Glenneberg J, Jacobi S, Hydrogen Peroxide in Ullmann’s Encycl. Ind. Chem., Wiley-VCH Verlag GmbH, Weinheim (2012).
Campos-Martin JM, Blanco-Brieva G, Fierro JLG, Angew. Chem.-Int. Edit., 45, 6962 (2006)
Samanta C, Appl. Catal. A: Gen., 350(2), 133 (2008)
Ranganathan S, Sieber V, Catalysts, 8, 379 (2018)
Menegazzo F, Signoretto M, Ghedini E, Strukul G, Menegazzo F, Signoretto M, Ghedini E, Strukul G, Catalysts, 9, 251 (2019)
Hargreaves JSJ, Chung YM, Ahn WS, Hisatomi T, Domen K, Kung KC, Kung HH, Appl. Catal. A: Gen., 594, 117419 (2020)
Yang S, Verdaguer-Casadevall A, Arnarson L, Silvioli L, Colic V, Frydendal R, Rossmeisl J, Chorkendorff I, Stephens IEL, ACS Catal., 8, 4064 (2018)
Edwards JK, Freakley SJ, Carley AF, Kiely CJ, Hutchings GJ, Accounts Chem. Res., 47, 845 (2014)
Flaherty DW, ACS Catal., 8, 1520 (2018)
Seo M, Kim HJ, Han SS, Lee KY, Catal. Surv. from Asia, 21, 1 (2017)
Lewis RJ, Hutchings GJ, ChemCatChem, 11, 298 (2019)
Blaser HU, Indolese A, Schnyder A, Steiner H, Studer M, J. Mol. Catal. A Chem., 173, 3 (2001)
Toebes ML, van Dillen JA, de Jong YP, J. Mol. Catal. A-Chem., 173(1-2), 75 (2001)
Xiao X, Kang TU, Nam HB, Bhang SH, Lee SY, Ahn JP, Yu TY, Korean J. Chem. Eng., 35(12), 2379 (2018)
Jang YP, Nam HB, Song J, Lee SY, Ahn JP, Yu TK, Korean J. Chem. Eng., 36(9), 1417 (2019)
Edwards JK, Solsona B, Ntainjua E, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ, Korean J. Chem. Eng., 323, 1037 (2009)
Hu BZ, Deng WP, Li RS, Zhang QH, Wang Y, Delplanque-Janssens F, Paul D, Desmedt F, Miquel P, J. Catal., 319, 15 (2014)
Garcia T, Agouram S, Dejoz A, Sanchez-Royo JF, Torrente-Murciano L, Solsona B, Catal. Today, 248, 48 (2015)
Arrigo R, Schuster ME, Abate S, Giorgianni G, Centi G, Perathoner S, Wrabetz S, Pfeifer V, Antonietti M, Schlogl R, ACS Catal., 6, 6959 (2016)
Yook S, Kwon HC, Kim YG, Choi W, Choi M, ACS Sustain. Chem. Eng., 5, 1208 (2017)
Lee S, Jeong H, Chung YM, J. Catal., 365, 125 (2018)
Lee S, Chung YM, Mater. Lett., 234, 58 (2019)
Lee S, Chung YM, Catal. Today, 352, 270 (2020)
Hang VTT, Chung YM, Korean J. Chem. Eng., 37(1), 65 (2020)
Vu HTT, Vo VLN, Chung YM, Appl. Catal. A: Gen., 607, 117867 (2020)
Goertzen SL, Theriault KD, Oickle AM, Tarasuk AC, Andreas HA, Carbon, 48, 1252 (2010)
Jeon HJ, Chung YM, Appl. Catal. B: Environ., 210, 212 (2017)
Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M, Nature, 438, 177 (2005)
Nakajima K, Hara M, ACS Catal., 2, 1296 (2012)
Hara M, Yoshida T, Takagaki A, Takata T, Kondo JN, Hayashi S, Domen K, Angew. Chem.-Int. Edit., 43, 2955 (2004)
Suganuma S, Nakajima K, Kitano M, Hayashi S, Hara M, ChemSusChem, 5, 1841 (2012)
Mohamed SK, Abuelhamd M, Allam NK, Shahat A, Ramadan M, Hassan HMA, Desalination, 477, 114278 (2020)
Wang J, Xu W, Ren J, Liu X, Lu G, Wang Y, Green Chem., 13, 2678 (2011)
Ngaosuwan K, Goodwin JG, Prasertdham P, Renew. Energy, 86, 262 (2016)
Mar WW, Somsook E, Procedia Eng., 32, 212 (2012)
Cerchiaro G, Sant’Ana AC, Temperini MLA, Ferreira AMDC, Carbohydr. Res., 340, 2352 (2005)
Bell AF, Barron LD, Hecht L, Carbohydr. Res., 257, 11 (1994)
He H, Gao C, Molecules, 15, 4679 (2010)
Gu X, Qi W, Xu X, Sun Z, Zhang L, Liu W, Pan X, Su D, Nanoscale, 6, 6609 (2014)
Qu Y, Engdahl A, Zhu S, Vajda V, McLoughlin N, Astrobiology, 15, 825 (2015)
Kim J, Chung YM, Kang SM, Choi CH, Kim BY, Kwon YT, Kim TJ, Oh SH, Lee CS, ACS Catal., 2, 1042 (2012)
Chung YM, Kwon YT, Kim TJ, Oh SH, Lee CS, Chem. Commun., 47, 5705 (2011)
Khan Z, Dummer NF, Edwards JK, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 376, 201700 (2018)
Tian PF, Ouyang L, Xu XY, Ao C, Xu XC, Si R, Shen XJ, Lin M, Xu J, Han YF, J. Catal., 349, 30 (2017)
Zaman AC, J. Mol. Liq., 249, 892 (2018)
Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M, J. Am. Chem. Soc., 130(38), 12787 (2008)
Suganuma S, Nakajima K, Kitano M, Kato H, Tamura A, Kondo H, Yanagawa S, Hayashi S, Hara M, Microporous Mesoporous Mater., 143, 443 (2011)
Okamura M, Takagaki A, Toda M, Kondo JN, Domen K, Tatsumi T, Hara M, Hayashi S, Chem. Mater., 18, 3039 (2006)
Wang C, Guo Z, Shen W, Zhang A, Xu Q, Liu h, Wang Y, J. Mater. Chem. A, 3, 6064 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로