ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 14, 2020
Accepted January 26, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Cascade conversion of glucose to 5-hydroxymethylfurfuralover Bronsted-Lewis bi-acidic SnAl-beta zeolites

Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea 1Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea 2LOTTE Chemical Research Institute, Daejeon 34110, Korea
mbpark@inu.ac.kr
Korean Journal of Chemical Engineering, June 2021, 38(6), 1161-1169(9), 10.1007/s11814-021-0752-1
downloadDownload PDF

Abstract

The control of acidic properties in a catalyst is one of the key features of technology utilizing biomass for chemical production. In this study, the Bronsted and Lewis bi-acidic SnAl-beta zeolites with controllable acidity were successfully prepared by acid dealumination and isomorphic substitution of Al by Sn, and applied for the cascade conversion of glucose to 5-hydroxymethylfurfural (5-HMF). The Lewis acidity of the catalysts was increased as the higher concentration of nitric acid used for the dealumination process. The optimum portion of Lewis/(Bronsted+Lewis) ratio was investigated to maximize the yield of 5-HMF, which is converted from the glucose via fructose by the cascade reaction. The conversion of glucose was increased until the L/(B+L) ratio reached 0.89 and the selectivity to 5-HMF reached its maximum at the Lewis acid portion of 0.76 among the total acid sites.

References

Bozell JJ, Petersen GR, Green Chem., 12, 539 (2010)
Chatterjee C, Pong F, Sen A, Green Chem., 17, 40 (2015)
Wei WQ, Wu SB, Fuel, 225, 311 (2018)
Esteban J, Yustos P, Ladero M, Catalysts, 8, 637 (2018)
Takagaki A, Catalysts, 9, 907 (2019)
Ji J, Xu Y, Liu Y, Zhang Y, Catal. Commun., 144, 106074 (2020)
Sajid M, Zhao X, Liu D, Green Chem., 20, 5427 (2018)
Xue Z, Ma MG, Li Z, Mu T, RSC Adv., 6, 98874 (2016)
Zhang WW, Zhu YX, Xu HM, Gaborieau M, Huang J, Jiang YJ, Catal. Today, 351, 133 (2020)
Yan H, Yang Y, Tong D, Xiang X, Hu C, Catal. Commun., 351, 1558 (2009)
Chung NH, Oanh VT, Thoa LK, Hoang PH, Catal. Lett., 150(1), 170 (2020)
Swift TD, Nguyen H, Erdman Z, Kruger JS, Nikolakis V, Vlachos DG, J. Catal., 333, 149 (2016)
Hu L, Wu Z, Xu JX, Sun Y, Lin L, Liu SJ, Chem. Eng. J., 244, 137 (2014)
Xu Q, Zhu Z, Tian Y, Deng J, Shi J, Fu Y, Bioresources, 9, 303 (2014)
Treacy MMJ, Newsam JM, Nature, 332, 249 (1988)
Wright PA, Zhou WZ, Perez-Pariente J, Arranz M, J. Am. Chem. Soc., 127(2), 494 (2005)
Otomo R, Tatsumi T, Yokoi T, Catal. Sci. Technol., 5, 4001 (2015)
Otomo R, Yokoi T, Tatsumi T, ChemCatChem, 7, 4180 (2015)
Moliner M, Roman-Leshkov Y, Davis ME, Proc. Natl. Acad. Sci., 107, 6164 (2010)
Bermejo-Deval R, Gounder R, Davis ME, ACS Catal., 2, 2705 (2012)
Hammond C, Conarad S, Hermans I, Angew. Chem.-Int. Edit., 51, 11736 (2012)
Tang B, Dai W, Wu G, Guan N, Li L, Hunger M, ACS Catal., 4, 2801 (2014)
Jin J, Ye X, Li Y, Wang Y, Li L, Gu J, Zhao W, Shi J, Dalton Trans., 43, 8196 (2014)
Yang X, Liu Y, Li X, Ren J, Zhou L, Lu T, Su Y, ACS Sustainable Chem. Eng., 6, 8256 (2018)
Emeis CA, J. Catal., 141, 347 (1993)
Xia HA, Hu H, Xu SQ, Xiao KH, Zuo SL, Biomass Bioenerg., 108, 426 (2018)
Omegna A, Vasic M, van Bokhoven JA, Pirngruber G, Prins R, Phys. Chem. Chem. Phys., 6, 447 (2004)
Srasra M, Delsarte S, Gaigneaux EM, J. Phys. Chem. C, 114, 4527 (2010)
Roberge DM, Hausmann H, Holderich WF, Phys. Chem. Chem. Phys., 4, 3128 (2002)
Esquivel D, Cruz-Cabeza AJ, Jimenez-Sanchidrian C, Romero-Salguero FJ, Microporous Mesoporous Mater., 179, 30 (2013)
Harris JW, Cordon MJ, Di Iorio JR, Vega-Vila JC, Ribeiro FH, Gounder R, J. Catal., 335, 141 (2016)
Saenluang K, Thivasasith A, Dugkhuntod P, Pornsetmetakul P, Salakhum S, Namuangruk S, Wattanakit C, Catalysts, 10, 1249 (2020)
Deng J, Liu J, Song W, Zhao Z, Zhao L, Zheng H, Lee AC, Chen Y, Liu J, RSC Adv., 7, 7130 (2017)
Dong W, Shen Z, Peng B, Gu M, Zhou X, Xiang B, Zhang Y, Sci. Rep., 6, 26713 (2016)
Candu N, El Fergani M, Verziu M, Cojocaru B, Jurca B, Apostol N, Teodorescu C, Parvulescu VI, Coman SM, Catal. Today, 325, 109 (2019)
Hou QD, Zhen MN, Liu L, Chen Y, Huang F, Zhang SQ, Li WZ, Ju MT, Appl. Catal. B: Environ., 224, 183 (2018)
Antonetti C, Licursi D, Sulignati S, Valentini G, Galletti AM, Catalysts, 6, 196 (2016)
Kumar S, Nepak D, Kansal SK, Elumalai S, RSC Adv., 8, 30106 (2018)
Delidovich I, Palkovits R, ChemSusChem, 9, 547 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로