ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 23, 2020
Accepted March 7, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

CO2 hydrogenation activity of Ni-Mg-Al2O3 catalysts: Reaction behavior on NiAl2O4 and MgAl2O4

School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea 1Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea 2Korea Institute of Energy Research, Daejeon 34129, Korea
Korean Journal of Chemical Engineering, June 2021, 38(6), 1188-1196(9), 10.1007/s11814-021-0778-4
downloadDownload PDF

Abstract

CO2 hydrogenation activity of nickel-magnesium-aluminum mixed oxide catalysts was investigated. As Ni concentration increased, CO2 conversion increased due to the increased active metal content and suppression of NiAl2O4 formation. Calcination temperature was found to affect the textural properties of catalysts and to decrease surface area and pore volume significantly. Therefore, catalysts calcined at a relatively low temperature showed high activity, while the particle strength slightly decreased with the reduced calcination temperature. The catalytic activity of reduced NiAl2O4 and MgAl2O4 spinel oxides for the hydrogenation of CO2 was also investigated. NiAl2O4 dissociated CO2 to C on reduced Ni, and increased CH4 selectivity. On the other hand, CO2 was not fully dissociated, and the CO intermediate was desorbed to produce gaseous CO on reduced MgAl2O4. Adding MgO suppressed the formation of NiAl2O4, but CH4 selectivity decreased due to the formation of MgAl2O4, indicating the amount of MgO added should be optimized depending on the product required.

References

Guerrero JM, Blaabjerg F, Zhelev T, Hemmes K, Monmasson E, Jemei S, Comech MP, Granadino RN, Frau JL, IEEE Ind. Electron. Mag., 4(1), 52 (2010)
Dincer I, Renew. Sust. Energ. Rev., 4(2), 157 (2000)
Edwards RWJ, Celia MA, PNAS, 115(38), E8815 (2018)
Al-Mamoori A, Krishnamurthy A, Rownaghi AA, Rezaei F, Energy Technol., 5, 834 (2017)
Figueroa JD, Fout T, Plasynski S, Mcllvried H, Srivastava RD, Int. J. Greenhouse Gas Control, 2(1), 9 (2008)
Schack D, Rihko-Struckmann L, Sundmacher K, Ind. Eng. Chem. Res., 57(30), 9889 (2018)
Barton JP, Infield DG, EEE Trans. Energy Convers, 19(2), 441 (2004)
Ancona MA, Antonioni G, Branchini L, De Pascale A, Melino F, Orlandini V, Antonucci V, Ferraro M, Energy Procedia, 101, 854 (2016)
Lee B, Lee H, Kang S, Lim H, J. Energy Storage, 24, 100791 (2019)
Zhou G, Liu H, Xing Y, Xu S, Xie H, Xiong K, J. CO2 Utilization, 26, 221 (2018)
Li MS, Amari H, van Veen AC, Appl. Catal. B: Environ., 239, 27 (2018)
Zhang YQ, Jacobs G, Sparks DE, Dry ME, Davis BH, Catal. Today, 71(3-4), 411 (2002)
Wang JJ, You ZY, Zhang QH, Deng WP, Wang Y, Catal. Today, 215, 186 (2013)
Gotz M, Lefebvre J, Mors F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T, Renew. Energy, 85, 1371 (2016)
Wu HC, Chang YC, Wu JH, Lin JH, Lin IK, Chen CS, Catal. Sci. Technol., 5, 4154 (2015)
Stangeland K, Kalai D, Li H, Yu Z, Energy Procedia, 105, 2022 (2017)
Weatherbee GD, Bartholomew CH, J. Catal., 77(2), 460 (1982)
Lim JY, McGregor J, Sederman AJ, Dennis JS, Chem. Eng. Sci., 141, 28 (2016)
Kester KB, Zagli E, Falconer JL, Appl. Catal., 22, 311 (1986)
Aksoylu AE, Onsan ZI, Appl. Catal. A: Gen., 164(1-2), 1 (1997)
Kang SH, Ryu JH, Kim JH, Seo SJ, Yoo YD, Sai Prasad PS, Lim HJ, Byun CD, Korean J. Chem. Eng., 28(12), 2282 (2011)
Garbarino G, Riani P, Magistri L, Busca G, RSC Adv., 5, 22759 (2015)
Lin J, Ma C, Wang Q, Xu Y, Ma G, Wang J, Wang H, Dong C, Zhang C, Ding M, Appl. Catal. B: Environ., 243, 162 (2019)
Rahmani S, Rezaei M, Meshkani F, J. Ind. Eng. Chem., 20(4), 1346 (2014)
Meshkani F, Rezaei M, Andache M, J. Ind. Eng. Chem., 20(4), 1251 (2014)
Bremer J, Sundmacher K, React. Chem. Eng., 4, 1019 (2019)
Lee JB, Ryu CK, Baek JI, Lee JH, Eom TH, Kim SH, Ind. Eng. Chem. Res., 47(13), 4465 (2008)
Vesselli E, Schweicher J, Bundhoo A, Frennet A, Kruse N, JJ. Phys. Chem. C, 115, 1255 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로