ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 23, 2020
Accepted February 1, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Methane oxidation to formaldehyde over vanadium oxide supported on various mesoporous silicas

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea 1Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
edpark@ajou.ac.kr
Korean Journal of Chemical Engineering, June 2021, 38(6), 1224-1230(7), 10.1007/s11814-021-0758-8
downloadDownload PDF

Abstract

To investigate the role of vanadium oxide supported on mesoporous silica (VOx/m-SiO2) catalysts in methane oxidation to formaldehyde, various catalysts were prepared. The type of m-SiO2 (SBA-15 and MCF-17), vanadium loading (1, 3, and 5%), and preparation method (wet impregnation; WI and dry impregnation; DI) were changed to produce VOx/m-SiO2 with different vanadium species. Because of the larger surface area and pore size, a higher dispersion of vanadium loading, 1% VOx/MCF-17(DI), showed the highest conversion (20.2%) in methane oxidation at 600 °C. Various characterizations revealed that DI was a better method to produce isolated tetrahedral monovanadate species in VOx/m-SiO2 catalysts than WI. As the vanadium loading was decreased from 5 to 1%, the methane conversion was further increased due to the higher degree of dispersion of monomeric VO4 generated in the catalysts with low vanadium loading. The combined results demonstrate that the dispersion of vanadium and the isolated monomeric VO4 phase increased when the vanadium catalyst was loaded on MCF-17 and prepared by the DI method.

References

Ohler N, Bell AT, J. Catal., 231(1), 115 (2005)
Arena F, Giordano N, Parmaliana A, J. Catal., 167(1), 66 (1997)
Ohler N, Bell AT, J. Phys. Chem. B, 110(6), 2700 (2006)
Lunsford JH, Catal. Today, 63(2-4), 165 (2000)
Hammond C, Conrad S, Hermans I, ChemSusChem, 5, 1668 (2012)
Monai M, Montini T, Gorte RJ, Fornasiero P, Eur. J. Inorg. Chem., 25, 2884 (2018)
Nguyen LD, Loridant S, Launay H, Pigamo A, Dubois JL, Millet JMM, J. Catal., 237(1), 38 (2006)
Arena F, Parmaliana A, Accounts Chem. Res., 36, 867 (2003)
Du GA, Lim SY, Yang YH, Wang C, Pfefferle L, Haller GL, Appl. Catal. A: Gen., 302(1), 48 (2006)
Hutchings GJ, Scurrell MS, Woodhouse JR, Chem. Soc. Rev., 18, 251 (1989)
Herman RG, Sun Q, Shi CL, Klier K, Wang CB, Hu HC, Wachs IE, Bhasin MM, Catal. Today, 37(1), 1 (1997)
Parmaliana A, Sokolovskii V, Miceli D, Arena F, Giordano N, ACS Symp. Ser., Am. Chem. Soc., Washington, DC, 43 (1993).
Sun XH, Shi YF, Zhang P, Zheng CM, Zheng XY, Zhang F, Zhang YC, Guan NJ, Zhao DY, Stucky GD, J. Am. Chem. Soc., 133(37), 14542 (2011)
Perego C, Millini R, Chem. Soc. Rev., 42, 3956 (2013)
Gu D, Schuth F, Chem. Soc. Rev., 43, 313 (2014)
Wallis P, Wohlrab S, Kalevaru VN, Frank M, Martin A, Catal. Today, 278, 120 (2016)
Inumaru K, Misono M, Okuhara T, Appl. Catal. A: Gen., 149(1), 133 (1997)
Wachs IE, Dalton Trans., 42, 11762 (2013)
Schwarz JA, Contescu C, Contescu A, Chem. Rev., 95(3), 477 (1995)
Zhao D, Sun J, Li Q, Stucky GD, Chem. Mater., 12, 275 (2000)
Klimova T, Esquivel A, Reyes J, Rubio M, Bokhimi X, Aracil J, Microporous Mesoporous Mater., 93, 331 (2006)
Tsung CK, Kuhn JN, Huang WY, Aliaga C, Hung LI, Somorjai GA, Yang PD, J. Am. Chem. Soc., 131(16), 5816 (2009)
Siggia S, Maxcy W, Anal. Chem., 19, 1023 (1947)
Sugino T, Kido A, Azuma N, Ueno A, Udagawa Y, J. Catal., 190(1), 118 (2000)
Carrero CA, Schloegl R, Wachs IE, Schomaecker R, ACS Catal., 4, 3357 (2014)
Du G, Lim S, Pinault M, Wang C, Fang F, Pfefferle L, Haller GL, J. Catal., 253(1), 74 (2008)
Olthof B, Khodakov A, Bell AT, Iglesia E, J. Phys. Chem. B, 104(7), 1516 (2000)
Wei D, Wang H, Feng XB, Chueh WT, Ravikovitch P, Lyubovsky M, Li C, Takeguchi T, Haller GL, J. Phys. Chem. B, 103(12), 2113 (1999)
Sokolovskii V, Arena F, Coluccia S, Parmaliana A, J. Catal., 173(1), 238 (1998)
Gao XT, Wachs IE, J. Phys. Chem. B, 104(6), 1261 (2000)
Burcham LJ, Deo G, Gao X, Wachs IE, Top. Catal., 11, 85 (2000)
Gao XT, Bare SR, Weckhuysen BM, Wachs IE, J. Phys. Chem. B, 102(52), 10842 (1998)
Launay H, Loridant S, Pigamo A, Dubois JL, Millet JMM, J. Catal., 246(2), 390 (2007)
Keller DE, Visser T, Soulimani F, Koningsberger DC, Weckhuysen BM, Vib. Spectrosc., 43, 140 (2007)
Weckhuysen BM, Keller DE, Catal. Today, 78(1-4), 25 (2003)
Anshits AG, Kondratenko EV, Voskresenskaya EN, Kurteeva LI, Pavlenko NI, Catal. Today, 46(2-3), 211 (1998)
Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA, Nature, 389(6653), 827 (1997)
Kumar S, Katz JS, Schroeder CM, Phys. Rev. Fluid, 2, 114304 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로