Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 6, 2021
Accepted April 14, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Electrochemical synthesis of ammonia from water and nitrogen: A Fe-mediated approach
Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea 1Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA 2Clean Fuel Laboratory, Korea Institute of Energy Research, Daejeon 34101, Korea
Korean Journal of Chemical Engineering, June 2021, 38(6), 1272-1276(5), 10.1007/s11814-021-0810-8
Download PDF
Abstract
Operation at mild conditions is essential for electrochemical processes enough to replace the Haber-Bosch process. Current electrochemical methods mainly rely on the synthesis of novel electro-catalysts before the operation of an electrochemical system, which burdens with extra cost, time, and the use of toxic non-green organic solvents. In this study, the zero-valent iron(Fe0)-mediated synthesis of NH3 was achieved at room temperature, with the active iron prepared in an on-site and continuous way. This on-site approach enabled us to remove the step of cumbersome synthesis of nano-sized electrocatalysts, thereby providing the active surface Fe for nitrogen reduction in eco-friendlier way. When a cell voltage of 4.5 was applied in the two-electrode water-based system, NH3 was found to be synthesized, which was accompanied by the deposition of Fe on the cathode surface. Considering that iron is among the most abundant and cheapest metals, this room-temperature synthesis proof of the concept with solvent-free, in-situ deposition and its utilization as an electrochemical catalyst, once optimized, may offer an economically advantageous option.
Keywords
References
Max Appl, Ammonia: Principles and industrial practice, WILEYVCH Verlag GmbH, Weinheim (2007).
Licht S, Cui BC, Wang BH, Li FF, Lau J, Liu SZ, Science, 345(6197), 637 (2014)
Bartels JR, Master thesis and dissertations, Iowa State University Capstones (2008).
Kandemir T, Schuster ME, Senyshyn A, Behrens M, Schlogl R, Chem. Angew., 52(48), 12723 (2013)
Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim SW, Hara M, Hosono H, Nat. Chem., 4, 934 (2012)
Gilbert P, Thornley P, Energy and carbon balance of ammonia production from biomass gasification, Proc. Bio-Ten Conf. 2010.
Anastasopoulou A, Wang Q, Hessel V, Lang J, Processes, 2(4), 694 (2014)
Giddey S, Badwal SPS, Kulkarni A, Int. J. Hydrog. Energy, 38(34), 14576 (2013)
Amar IA, Lan R, Petit CTG, Tao S, J. Solid State Electrochem., 15, 1845 (2011)
Marnellos G, Stoukides M, Science, 282(5386), 98 (1998)
Kyriakou V, Garagounis I, Vasileiou E, Vourros A, Stoukides M, Catal. Today, 286, 2 (2017)
Anderson JS, Rittle J, Peters JC, Nature, 501(7465), 84 (2013)
Rodriguez MM, Bill E, Brennessel WW, Holland PL, Science, 334(6057), 780 (2014)
Lukoyanov D, Yang ZY, Khadka N, Dean DR, Seefeldt LC, Hoffman BM, J. Am. Chem. Soc., 137(10), 3610 (2015)
Sun YP, Li XQ, Cao J, Zhang WX, Wang HP, Adv. Colloid Interface Sci., 120(1), 47 (2006)
Gillham RW, O’Hannesin SF, Groundwater, 32(6), 958 (1994)
Kanel SR, Manning B, Charlet L, Choi H, Environ. Sci. Technol., 39(5), 1291 (2005)
Gould JP, Water Res., 16(6), 871 (1982)
Battino R, Rettich TR, Tominaga T, J. Phy. Chem. Reference Data, 13(563), 1984 (2009)
Verdouw H, Echteld CJAV, Dekkers EMJ, Water Res., 12, 339 (1977)
Li X, Zhao C, Nature Commun., 6, 6616 (2015)
Meguro S, Sasaki T, Katagiri H, Habazaki H, Kawashima A, Sakaki T, Asami K, Hashimoto K, J. Electrochem. Soc., 147(8), 3003 (2000)
Diaz SL, Calderon JA, Barcia OE, Mattos OR, Electrochim. Acta, 53(25), 7426 (2008)
Diaz SL, Mattos OR, Barcia OE, Miranda FJF, Electrochim. Acta, 47(25), 4091 (2002)
Beverskog B, Puigdomenech I, Corrosion Sci., 38(12), 2121 (1996)
Crossland JL, Tyler DR, Coord. Chem. Rev., 254(17), 1883 (2010)
Yang GCC, Lee HL, Water Res., 39(5), 884 (2005)
Koleli F, Kayan DB, J. Electroanal. Chem., 638(1), 119 (2010)
Kim K, Lee N, Yoo CY, Kim JN, Yoon HC, Han JI, J. Electrochem. Soc., 163(7), F610 (2016)
Cui X, Tang C, Liu X, Wang C, Ma W, Zhang Q, Chem. Eur. J., 24(69), 18494 (2018)
Zhao X, Lan X, Yu D, Fu H, Liu Z, Mu T, Chem. Commun, 54, 13010 (2018)
Chen C, Liu Y, Yao Y, EurJIC., 2020(34), 3236 (2020)
Hu L, Khaniya A, Wang J, Chen G, Kaden WE, Feng X, ACS Catal., 8, 9312 (2018)
Yang X, Sun S, Meng L, Li K, Mukherjee S, Chen X, Lv J, Liang S, Zang HY, Yan LK, Wu G, Appl. Catal. B: Environ., 285, 119794 (2021)
Chang CC, Li SR, Chou HL, Lee YC, Patil S, Lin YS, Chang CC, Chang YJ, Wang DY, NANO MICRO Small, 15, 194723 (2019)
Licht S, Cui BC, Wang BH, Li FF, Lau J, Liu SZ, Science, 345(6197), 637 (2014)
Bartels JR, Master thesis and dissertations, Iowa State University Capstones (2008).
Kandemir T, Schuster ME, Senyshyn A, Behrens M, Schlogl R, Chem. Angew., 52(48), 12723 (2013)
Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim SW, Hara M, Hosono H, Nat. Chem., 4, 934 (2012)
Gilbert P, Thornley P, Energy and carbon balance of ammonia production from biomass gasification, Proc. Bio-Ten Conf. 2010.
Anastasopoulou A, Wang Q, Hessel V, Lang J, Processes, 2(4), 694 (2014)
Giddey S, Badwal SPS, Kulkarni A, Int. J. Hydrog. Energy, 38(34), 14576 (2013)
Amar IA, Lan R, Petit CTG, Tao S, J. Solid State Electrochem., 15, 1845 (2011)
Marnellos G, Stoukides M, Science, 282(5386), 98 (1998)
Kyriakou V, Garagounis I, Vasileiou E, Vourros A, Stoukides M, Catal. Today, 286, 2 (2017)
Anderson JS, Rittle J, Peters JC, Nature, 501(7465), 84 (2013)
Rodriguez MM, Bill E, Brennessel WW, Holland PL, Science, 334(6057), 780 (2014)
Lukoyanov D, Yang ZY, Khadka N, Dean DR, Seefeldt LC, Hoffman BM, J. Am. Chem. Soc., 137(10), 3610 (2015)
Sun YP, Li XQ, Cao J, Zhang WX, Wang HP, Adv. Colloid Interface Sci., 120(1), 47 (2006)
Gillham RW, O’Hannesin SF, Groundwater, 32(6), 958 (1994)
Kanel SR, Manning B, Charlet L, Choi H, Environ. Sci. Technol., 39(5), 1291 (2005)
Gould JP, Water Res., 16(6), 871 (1982)
Battino R, Rettich TR, Tominaga T, J. Phy. Chem. Reference Data, 13(563), 1984 (2009)
Verdouw H, Echteld CJAV, Dekkers EMJ, Water Res., 12, 339 (1977)
Li X, Zhao C, Nature Commun., 6, 6616 (2015)
Meguro S, Sasaki T, Katagiri H, Habazaki H, Kawashima A, Sakaki T, Asami K, Hashimoto K, J. Electrochem. Soc., 147(8), 3003 (2000)
Diaz SL, Calderon JA, Barcia OE, Mattos OR, Electrochim. Acta, 53(25), 7426 (2008)
Diaz SL, Mattos OR, Barcia OE, Miranda FJF, Electrochim. Acta, 47(25), 4091 (2002)
Beverskog B, Puigdomenech I, Corrosion Sci., 38(12), 2121 (1996)
Crossland JL, Tyler DR, Coord. Chem. Rev., 254(17), 1883 (2010)
Yang GCC, Lee HL, Water Res., 39(5), 884 (2005)
Koleli F, Kayan DB, J. Electroanal. Chem., 638(1), 119 (2010)
Kim K, Lee N, Yoo CY, Kim JN, Yoon HC, Han JI, J. Electrochem. Soc., 163(7), F610 (2016)
Cui X, Tang C, Liu X, Wang C, Ma W, Zhang Q, Chem. Eur. J., 24(69), 18494 (2018)
Zhao X, Lan X, Yu D, Fu H, Liu Z, Mu T, Chem. Commun, 54, 13010 (2018)
Chen C, Liu Y, Yao Y, EurJIC., 2020(34), 3236 (2020)
Hu L, Khaniya A, Wang J, Chen G, Kaden WE, Feng X, ACS Catal., 8, 9312 (2018)
Yang X, Sun S, Meng L, Li K, Mukherjee S, Chen X, Lv J, Liang S, Zang HY, Yan LK, Wu G, Appl. Catal. B: Environ., 285, 119794 (2021)
Chang CC, Li SR, Chou HL, Lee YC, Patil S, Lin YS, Chang CC, Chang YJ, Wang DY, NANO MICRO Small, 15, 194723 (2019)