ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 5, 2021
Accepted March 28, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Radical-driven photocatalytic transformation of organic molecules

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
dclee@kaist.edu
Korean Journal of Chemical Engineering, July 2021, 38(7), 1308-1316(9), 10.1007/s11814-021-0794-4
downloadDownload PDF

Abstract

In photocatalysis, photons are absorbed by semiconductor materials and photogenerated electrons and holes migrate to the catalytic surface for desired reactions. Photocatalytic reduction and oxidation of organic molecules pose significant challenges and opportunities, with the surging demand for energy-efficient and carbon-neutral organic synthesis. In this review, we highlight the recent progress in the expanding area of radical-driven photocatalytic transformation of organic molecules. Our focus expands from heterogeneous catalysts to quantum dots, summarizing the reaction mechanism and photocatalytic activity, in reference to conventional molecular catalysts.

References

Fujishima HKA, Nature, 238, 38 (1972)
Esswein MJ, Nocera DG, Chem. Rev., 107(10), 4022 (2007)
Kudo A, Miseki Y, Chem. Soc. Rev., 38, 253 (2009)
Holladay JD, Hu J, King DL, Wang Y, Catal. Today, 139, 244 (2009)
Maeda K, Domen K, J. Phys. Chem. Lett., 1, 2655 (2010)
Kim WD, Kim JH, Lee S, Lee S, Woo JY, Lee K, Chae WS, et al., Chem. Mater., 28, 962 (2016)
Lee KH, Lee CH, Cheong JY, Lee SK, Kim ID, Joh HI, Lee DC, Korean J. Chem. Eng., 34(12), 3214 (2017)
Chen S, Takata T, Domen K, Nat. Rev. Mater., 2, 1 (2017)
Takata T, Jiang JZ, Sakata Y, Nakabayashi M, Shibata N, Nandal V, Seki K, Hisatomi T, Domen K, Nature, 581(7809), 411 (2020)
Yu JG, Low JX, Xiao W, Zhou P, Jaroniec M, J. Am. Chem. Soc., 136(25), 8839 (2014)
Wang K, Li Q, Liu B, Cheng B, Ho W, Yu J, Appl. Catal. B: Environ., 176-177, 44 (2015)
Cho H, Kim WD, Lee K, Lee S, Kang GS, Joh HL, Lee DC, Appl. Surf. Sci., 429, 2 (2018)
Cho H, Kim WD, Yu J, Lee S, Lee DC, ChemCatChem, 10, 5679 (2018)
Jeong S, Kim GM, Kang GS, Kim C, Lee H, Kim WJ, Lee YK, Lee S, Kim H, Lim HK, Lee DC, J. Phys. Chem. C, 123, 29184 (2019)
Li D, Haneda H, Hishita S, Ohashi N, Chem. Mater., 17, 2596 (2005)
Mo J, Zhang Y, Xu Q, Lamson JJ, Zhao R, Atmos. Environ., 43, 2229 (2009)
Ochiai T, Fujishima A, J. Photochem. Photobiol. C Photochem. Rev., 13, 247 (2012)
Ghosh I, Marzo L, Das A, Shaikh R, Konig B, Accounts Chem. Res., 49, 1566 (2016)
Lin SS, Ischay MA, Fry CG, Yoon TP, J. Am. Chem. Soc., 133(48), 19350 (2011)
Cismesia MA, Yoon TP, Chem. Sci., 6, 5426 (2015)
Ahmed SN, Haider W, Nanotechnology, 29, 342001 (2018)
Huang C, Wen J, Shen Y, He F, Mi L, Gan Z, Ma J, Liu S, Ma H, Zhang Y, Chem. Sci., 9, 7912 (2018)
Adachi T, Latthe SS, Gosavi SW, Roy N, Suzuki N, Ikari H, Kato K, Katsumata K, Nakata K, Furudate M, Inoue T, Kondo T, Yuasa M, Fujishima A, Terashima C, Appl. Surf. Sci., 458, 917 (2018)
Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping JD, Fu X, Antonieta M, Wang X, Angew. Chem.-Int. Edit., 49, 441 (2010)
Zhu J, Xiao P, Li H, Carabineiro SAC, ACS Appl. Mater. Interfaces, 6, 16449 (2014)
Zhang ZY, Edme K, Lian S, Weiss EA, J. Am. Chem. Soc., 139(12), 4246 (2017)
Caputo JA, Frenette LC, Zhao N, Sowers KL, Krauss TD, Weix DJ, J. Am. Chem. Soc., 139(12), 4250 (2017)
Caruge JM, Halpert JE, Wood V, Bulovi V, Bawendi MG, Nat. Photonics., 2, 247 (2008)
Wood V, Bulovic V, Nano Rev., 1, 5202 (2010)
Xu YF, Yang MZ, Chen BX, Wang XD, Chen HY, Kuang DB, Su CY, J. Am. Chem. Soc., 139(16), 5660 (2017)
Ge L, Zuo F, Liu J, Ma Q, Wang C, Sun D, Bartels L, Feng P, J. Phys. Chem. C, 116, 13708 (2012)
Rabouw FT, de Mello Donega C, Top. Curr. Chem., 374 (2016)
Lee H, Yoon DE, Koh S, Kang MS, Lim J, Lee DC, Chem. Sci., 11, 2318 (2020)
Kim D, Lee DC, J. Phys. Chem. Lett., 11, 2647 (2020)
Liu H, Li H, Lu J, Zeng S, Wang M, Luo N, Xu S, Wang F, ACS Catal., 8, 4761 (2018)
Wu X, Fang X, Xie S, Lin J, Cheng J, Zhang Q, Chen L, Wang Y, Nat. Catal., 1, 772 (2018)
Yin LX, Liebscher J, Chem. Rev., 107(1), 133 (2007)
Yeung CS, Dong VM, Chem. Rev., 111(3), 1215 (2011)
Miyaura N, Yamada K, Suzuki A, Tetrahedron Lett., 20, 3437 (1979)
Zoller J, Fabry CD, Rueping M, ACS Catal., 5, 3900 (2015)
Zhao Y, Antonietti M, Angew. Chem.-Int. Edit., 129, 9464 (2017)
McClelland KP, Clemons TD, Stupp SI, Weiss EA, ACS Macro Lett., 9, 7 (2020)
Kuriechen SK, Murugesan S, Raj SP, J. Catal., 2013, 1 (2013)
Hirakawa T, Yawata K, Nosaka Y, Appl. Catal. A: Gen., 325(1), 105 (2007)
Konstantinou IK, Albanis TA, Appl. Catal. B: Environ., 49(1), 1 (2004)
Auffan M, Pedeutour M, Rose J, Masion A, Ziarelli F, et al., Environ. Sci. Technol., 44, 2689 (2010)
Li Y, Tang L, Peng S, Li Z, Lu G, CrystEngComm, 14, 6974 (2012)
Park H, Ou HH, Kang U, Choi J, Hoffmann MR, Catal. Today, 266, 153 (2016)
Mitkina T, Stanglmair C, Setzer W, Gruber M, Kisch H, Konig B, Org. Biomol. Chem., 10, 3556 (2012)
Jensen SC, Homan SB, Weiss EA, J. Am. Chem. Soc., 138(5), 1591 (2016)
Lian S, Christensen JA, Kodaimati MS, Rogers CR, Wasielewski MR, Weiss EA, J. Phys. Chem. C, 123, 5923 (2019)
Thanh TH, Thanh DH, Lam VQ, Adv. Optoelectron., 2014, 9 (2014)
Cheng L, Xiang Q, Liao Y, Zhang H, Energy Environ. Sci., 11, 1362 (2018)
Noble A, MacMillan DWC, J. Am. Chem. Soc., 136(33), 11602 (2014)
Kim D, Lee YK, Lee D, Kim WD, Bae WK, Lee DC, ACS Nano, 11, 12461 (2017)
Yoon DE, Kim WD, Kim D, Lee D, Koh S, Bae WK, Lee DC, J. Phys. Chem. C, 121, 24837 (2017)
Kim WD, Yoon DE, Kim D, Koh S, Bae WK, Chae WS, Lee DC, J. Phys. Chem. C, 123, 9445 (2019)
Harris C, Kamat PV, ACS Nano, 4, 7321 (2010)
Ma C, Wu D, Yao X, Liu X, Wei M, Liu Y, Ma Z, Huo P, Yan Y, J. Alloy. Compd., 712, 486 (2017)
Xia W, Wu J, Hu JC, Sun S, Li MD, Liu H, Lan M, Wang F, ChemSusChem, 12, 4617 (2019)
Chakraborty IN, Roy S, Devatha G, Rao A, Pillai PP, Chem. Mater., 31, 2258 (2019)
Koh S, Eom T, Kim WD, Lee K, Lee D, Lee YK, Kim H, Bae WK, Lee DC, Chem. Mater., 29, 6346 (2017)
Lee DK, Koh SJ, Yoon DE, Lee SH, Kim WD,Kim DI, Bae WK, Lim JH, Lee DC, Korean J. Chem. Eng., 36(9), 1518 (2019)
Koh S, Lee H, Lee T, Park K, Kim WJ, Lee DC, J. Chem. Phys., 151, 144704 (2019)
Kim WD, Kim D, Yoon DE, Lee H, Lim J, Bae WK, Lee DC, Chem. Mater., 31, 3066 (2019)
Li L, Reiss P, J. Am. Chem. Soc., 130(35), 11588 (2008)
Martin JG, Hill RK, Chem. Rev., 61, 537 (1961)
Jiang X, Wang R, Chem. Rev., 113, 5515 (2013)
Guo Y, Chen T, Liu Q, Zhang Z, Fang X, J. Phys. Chem. C, 120, 25328 (2016)
Zhagn G, Lan ZA, Lin L, Lin S, Wang X, Chem. Sci., 7, 3062 (2016)
Wang X, Blechert S, Antonietti M, ACS Catal., 2, 1596 (2012)
Kang YY, Yang YQ, Yin LC, Kang XD, Liu G, Cheng HM, Adv. Mater., 27(31), 4572 (2015)
Zhu J, Xiao P, Li H, Carabineiro SAC, ACS Appl. Mater. Interfaces, 6, 16449 (2014)
Hu S, Li F, Fan Z, Wang F, Zhao Y, Lv Z, Dalt. Trans., 44, 1084 (2014)
Jones LO, Mosquera MA, Jiang Y, Weiss EA, Schatz GC, Ratner MA, J. Am. Chem. Soc., 142, 15488 (2020)
Nakayama K, Maeta N, Horiguchi G, Kamiya H, Okada Y, Org. Lett., 21, 2246 (2019)
Huang Y, Zhu Y, Egap E, ACS Macro Lett., 7, 184 (2018)
Jiao X, Zheng K, Chen Q, Li X, Li Y, Shao W, Xu J, Zhu J, Pan Y, Sun Y, Xie Y, Angew. Chem.-Int. Edit., 59, 15497 (2020)
Han G, Yan T, Zhang W, Zhang YC, Lee DY, Cao Z, Sun Y, ACS Catal., 9, 11341 (2019)
Gao Y, Zhang J, Chen X, Ma D, Yan N, Chempluschem, 79, 825 (2014)
Tsai YT, Chen CY, Hsieh YJ, Tsai ML, Eur. J. Inorg. Chem., 2019, 4637 (2019)
Gazi S, Ng WKH, Ganguly R, Moeljadi AMP, Hirao H, Soo HS, Chem. Sci., 6, 7130 (2015)
Enright MJ, Gilbert-Bass K, Sarsito H, Cossairt BM, Chem. Mater., 31, 2677 (2019)
Mu W, Herrmann JM, Pichat P, Catal. Lett., 3, 73 (1989)
Almquist CB, Biswas P, Appl. Catal. A: Gen., 214(2), 259 (2001)
Fujihira M, Satoh Y, Osa T, Nature, 293, 206 (1981)
Ohno T, Tokieda K, Higashida S, Matsumura M, Appl. Catal. A: Gen., 244(2), 383 (2003)
Yoshida H, Yuzawa H, Aoki M, Otake K, Itoh H, Hattori T, Chem. Commun., 4634 (2008).
Wakerley DW, Kuehnel MF, Orchard KL, Ly KH, Rosser TE, Reisner E, Nat. Energy, 2, 1 (2017)
Charton M, J. Am. Chem. Soc., 97, 3691 (1975)
Stefanidis D, Jencks WP, J. Am. Chem. Soc., 115, 6045 (1993)
Uekert T, Kuehnel MF, Wakerley DW, Reisner E, Energy Environ. Sci., 11, 2853 (2018)
Uekert T, Kasap H, Reisner E, J. Am. Chem. Soc., 141(38), 15201 (2019)
Uekert T, Dorchies F, Pichler CM, Reisner E, Green Chem., 22, 3262 (2020)
Achilleos DS, Yang W, Kasap H, Savateev A, Markushyna Y, Durrant JR, Reisner E, Angew. Chem.-Int. Edit., 59, 18184 (2020)
Pichler CM, Uekert T, Reisner E, Chem. Commun., 56, 5743 (2020)
Okada Y, Maeta N, Nakayama K, Kamiya H, J. Org. Chem., 83, 4948 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로