ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 15, 2020
Accepted April 11, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of multiple impeller designs and configurations on the droplet size and uniformity in a 100 L scale stirred tank

Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea 1Hanwha Solutions R&D Institute, 76 Gajeong-ro, Yuseong-gu, Daejeon 34128, Korea
jaewlee@kaist.ac.kr
Korean Journal of Chemical Engineering, July 2021, 38(7), 1348-1357(10), 10.1007/s11814-021-0803-7
downloadDownload PDF

Abstract

This study investigated the effect of multiple impeller designs and configurations on the Sauter mean diameter and the uniformity of droplet size in a 100 L scale stirred tank. By using a borescope installed inside the tank, droplet images of a highly turbid liquid-liquid system were captured even at high impeller speeds, and by adjusting the borescope position, it could be observed how the droplet size changed depending on the position. The area of the flow pattern produced by the impeller was taken as an impeller region, and it explained well the change in the droplet size due to the varying liquid phase volume and impeller spacing. In addition, the change of the Sauter mean diameter and the droplet size uniformity was also elucidated by the variation of the impeller diameter, blade angle, and number of impellers. All three parameters showed a decrease in the deviation between droplet sizes as they increased, but increasing the impeller diameter was the most effective in reducing the Sauter mean diameter itself.

References

Joshi C, Singhal RS, Korean J. Chem. Eng., 35(1), 195 (2018)
Im HJ, Park JI, Lee JW, Korean J. Chem. Eng., 36(10), 1680 (2019)
Lee JW, Ko YC, Jung YK, Lee KS, Yoon ES, Comput. Chem. Eng., 21, S1105 (1997)
Lee JR, Hasolli N, Lee KS, Lee KY, Park YO, Korean J. Chem. Eng., 36(9), 1548 (2019)
Wongkia A, Suriye K, Nonkhamwong A, Praserthdam P, Assabumrungrat S, Korean J. Chem. Eng., 30(3), 593 (2013)
Rocha-Valadez JA, Hassan M, Corkidi G, Flores C, Galindo E, Serrano-Carreon L, Biotechnol. Bioeng., 91(1), 54 (2005)
Bergbreiter DE, Sung SD, Adv. Synth. Catal., 348, 1352 (2006)
Park J, Lee S, Lee JW, Ind. Eng. Chem. Res., 57(6), 2310 (2018)
Lee JH, Lee HU, Lee JH, Lee SK, Yoo HY, Park CH, Kim SW, Korean J. Chem. Eng., 36(1), 71 (2019)
Desnoyer C, Masbernat O, Gourdon C, Chem. Eng. Sci., 58(7), 1353 (2003)
Kraume M, Gabler A, Schulze K, Chem. Eng. Technol., 27(3), 330 (2004)
Lee S, Varma A, AIChE J., 61(7), 2228 (2015)
Bohm L, Hohl L, Bliatsiou C, Kraume M, Chem. Ing. Tech., 91(12), 1724 (2019)
Gabler A, Wegener M, Paschedag AR, Kraume M, Chem. Eng. Sci., 61(9), 3018 (2006)
Pinelli D, Bakker A, Myers KJ, Reeder MF, Fasano J, Magelli F, Chem. Eng. Res. Des., 81(4), 448 (2003)
Maass S, Rehm T, Kraume M, Chem. Eng. J., 168(2), 827 (2011)
Hardy N, Augier F, Nienow AW, Beal C, Ben Chaabane F, Chem. Eng. Sci., 172, 158 (2017)
Gu DY, Liu ZH, Xu CL, Li J, Tao CY, Wang YD, Chem. Eng. Process., 118, 37 (2017)
Mishra VP, Joshi JB, Chem. Eng. Res. Des., 72(5), 657 (1994)
Cai MH, Zhou XS, Lu JA, Fan WM, Niu CP, Zhou JS, Sun XQ, Kang L, Zhang YX, Bioresour. Technol., 102(3), 3584 (2011)
Magelli F, Montante G, Pinelli D, Paglianti A, Chem. Eng. Sci., 101, 712 (2013)
Darvishi R, Esfahany MN, Bagheri R, Ind. Eng. Chem. Res., 54(44), 10953 (2015)
Ruiz M, Lermanda P, Padilla R, Hydrometallurgy, 63, 65 (2002)
Ritter J, Kraume M, Chem. Eng. Technol., 23(7), 579 (2000)
Haynes WM, Lide DR, Bruno TJ, CRC handbook of chemistry and physics, CRC Press, Boca Raton, Florida (2017).
Laliberte M, J. Chem. Eng. Data, 52(2), 321 (2007)
Vargaftik N, Volkov B, Voljak L, J. Phys. Chem. Ref. Data, 12, 817 (1983)
Girault H, Schiffrin D, Smith B, J. Colloid Interface Sci., 101, 257 (1984)
Lovick J, Mouza AA, Paras SV, Lye GJ, Angeli P, J. Chem. Technol. Biotechnol., 80(5), 545 (2005)
Letellier B, Xuereb C, Swaels P, Hobbes P, Bertrand J, Chem. Eng. Sci., 57(21), 4617 (2002)
Okufi S, De Ortiz EP, Sawistowski H, Can. J. Chem. Eng., 68, 400 (1990)
Justen P, Paul GC, Nienow AW, Thomas CR, Biotechnol. Bioeng., 52(6), 672 (1996)
Zhou GW, Kresta SM, Chem. Eng. Sci., 53(11), 2063 (1998)
Amanullah A, et al., Handbook of industrial mixing: Science and practice, John Wiley & Sons Inc., Hoboken, New Jersey, 1071 (2004).
McManamey W, Chem. Eng. Sci., 34, 432 (1979)
Rutherford K, Lee KC, Mahmoudi SM, Yianneskis M, AIChE J., 42(2), 332 (1996)
Gogate PR, Beenackers AA, Pandit AB, Biochem. Eng. J., 6, 109 (2000)
Hudcova V, Machon V, Nienow A, Biotechnol. Bioeng., 34, 617 (1989)
Baudou C, Xuereb C, Bertrand J, Can. J. Chem. Eng., 75(4), 653 (1997)
Pacek AW, Chamsart S, Nienow AW, Bakker A, Chem. Eng. Sci., 54(19), 4211 (1999)
Cutter LA, AIChE J., 12, 35 (1966)
Wu H, Patterson G, Chem. Eng. Sci., 44, 2207 (1989)
Sheng J, Meng H, Fox RO, Chem. Eng. Sci., 55(20), 4423 (2000)
Paul EL, Atiemo-Obeng VA, Kresta SM, Handbook of industrial mixing: Science and practice, John Wiley & Sons Inc., Hoboken (2004).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로