ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 8, 2020
Accepted March 12, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Biosynthesis of polyhydroxyalkanoates from sugarcane molasses by recombinant Ralstonia eutropha strains

Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea 1Bio-based Chemistry Center, Advanced Convergent Chemistry Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea 2Bio-based Chemistry Research Center, Advanced Convergent Chemistry Division, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Korea 3Department of Biotechnology and Engineering, Interdisciplinary Program of Bioenergy and Biomaterials, Chonnam National University, Gwangju 61186, Korea 4Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea 5Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
heetaek@cnu.ac.kr
Korean Journal of Chemical Engineering, July 2021, 38(7), 1452-1459(8), 10.1007/s11814-021-0783-7
downloadDownload PDF

Abstract

Sugarcane molasses was examined for the production of poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] in recombinant Ralstonia eutropha strains expressing Mannheimia succiniciproducens sacC gene encoding β-fructofuranosidase, which can hydrolyze sucrose into glucose and fructose in the culture medium. When crude sugarcane molasses was added to the culture medium to support 20 g/L of sucrose in flask cultivation, the growth of R. eutropha NCIMB11599 expressing the sacC gene was significantly inhibited, which resulted in OD600 of 1.2 with P(3HB) content of 0.1wt%. The inhibition of cell growth due to the usage of the crude sugarcane molasses was relieved by pretreatment of sugarcane molasses with activated charcoal. Sugarcane molasses pretreated with activated charcoal could support the growth of R. eutropha NCIMB11599 expressing the sacC gene to OD600 of 87.2 with P(3HB) content of 82.5 wt% in batch fermentation when it was added to culture medium to support 20 g/L of sucrose. Also, R. eutropha 437-540 expressing Escherichia coli ldhA gene encoding lactate dehydrogenase along with the sacC gene produced P(3HB-co-6.2mol%LA) with 29.1 wt% polymer content from sugarcane molasses in batch fermentation.

References

Pang B, Valencia LE, Wang J, Wan Y, Lal R, Zargar A, Keasling JD, Biotechnol. Bioprocess Eng., 24(3), 1 (2019)
Rhie MN, Kim HT, Jo SY, Chu LL, Baritugo KA, et al., Biotechnol. Bioprocess Eng., 24(1), 48 (2019)
Geyer R, Jambeck JR, Law KL, Sci. Adv., 3, e17007 (2017)
Sohn YJ, Kim HT, Baritugo KA, Jo SY, Song HM, Park SY, et al., Biotechnol. J., 15, 190048 (2020)
Choi SY, Rhie MN, Kim HT, Joo JC, Cho IJ, Son JN, et al., Metab. Eng., 58, 47 (2020)
Wang X, Zhang X, Lu H, Korean J. Chem. Eng., 37(2), 249 (2020)
Park SJ, Jang YA, Lee H, Park AR, Yang JE, Shin J, Oh YH, Song BK, Jegal J, Lee SH, Lee SY, Metab. Eng., 20, 20 (2013)
Khang TU, Kim MJ, Yoo JI, Sohn YJ, Jeon SG, Park SJ, Na JG, Int. J. Biol. Macromol., 174, 449 (2021)
Zheng Y, Chen jC, Ma YM, Chen GQ, Metab. Eng., 58, 82 (2020)
Chen GQ, Chen XY, Wu FQ, Chen JC, Adv. Ind. Eng. Polym. Res., 3(1), 1 (2020)
Choi JI, Lee SY, Appl. Environ. Microbiol., 65(10), 4363 (1999)
Lu WD, Alam MA, Luo WS, Asmatulu E, Bioresour. Technol., 271, 59 (2019)
Dikshit PK, Jun HB, Kim BS, Korean J. Chem. Eng., 37(3), 387 (2020)
Bhatia SK, Yoon JJ, Kim HJ, Hong JW, Hong YG, Song HS, Moon YM, Jeon JM, Kim YG, Yang YH, Bioresour. Technol., 257, 92 (2018)
Oh YH, Lee SH, Jang YA, Choi JW, Hong KS, Yu JH, Shin J, Song BK, Mastan SG, David Y, Baylon MG, Lee SY, Park SJ, Bioresour. Technol., 181, 283 (2015)
Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MAM, J. Biotechnol., 130(4), 411 (2007)
Bengtsson S, Pisco AR, Johansson P, Lemos PC, Reis MAM, J. Biotechnol., 147(3), 172 (2010)
Akaraonye E, Moreno C, Knowles JC, Keshavarz T, Roy I, Biotechnol. J., 7(2), 293 (2012)
Chan S, Kanchanatawee S, Jantama K, Bioresour. Technol., 103(1), 329 (2012)
Jung MY, Park BS, Lee J, Oh MK, Bioresour. Technol., 139, 21 (2013)
Nofemele Z, Shukla P, Trussler A, Permaul K, Singh S, J. Brewing Distilling., 3(2), 29 (2012)
Ortiz ME, Fornaguera MJ, Raya RR, Mozzi F, Appl. Microbiol. Biotechnol., 95(4), 991 (2012)
Samavi M, Rakshit S, Biotechnol. Bioprocess Eng., 25(2), 327 (2020)
Sindhu R, Gnansounou E, Binod P, Pandey A, Renew. Energy, 98, 203 (2016)
Bhatia SC, Advanced renewable energy systems, WPI Publishing, New Delhi (2014).
Gouda MK, Swellam AE, Omar SH, Microbiol. Res., 156(3), 201 (2001)
Renouf MA, Wegener MK, Nielsen LK, Biomass Bioenerg., 32(12), 1144 (2008)
Lee JW, Choi S, Kim JH, Lee SY, Appl. Environ. Microbiol., 76, 1699 (2010)
Lee JW, Choi S, Park JH, Vickers CE, Nielsen LK, Lee SY, Appl. Microbiol. Biotechnol., 88(4), 905 (2010)
Zhang YY, Bu YF, Liu JZ, Folia Microbiol., 60(5), 393 (2015)
Martinez O, Sanchez A, Font X, Barrena R, Bioresour. Technol., 263, 136 (2018)
Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Zhu LL, Bioresour. Technol., 99(6), 1736 (2008)
Xu S, Hao N, Xu L, Liu Z, Yan M, Li Y, Ouyang P, Biochem. Eng. J., 99, 177 (2015)
Andreessen C, Steinbuchel A, Appl. Microbiol. Biotechnol., 103(1), 143 (2019)
Seo H, Kim KJ, Biotechnol. Bioprocess Eng., 24(1), 155 (2019)
Zheng Y, Tianyuan S, Qingsheng Q, Biotechnol. Bioprocess Eng., 24(4), 579 (2019)
Park SJ, Jang YA, Noh W, Oh YH, Lee H, David Y, Baylon MG, Shin J, Yang JE, Choi SY, Lee SH, Lee SY, Biotechnol. Bioeng., 112(3), 638 (2015)
Sohn YJ, Kim HT, Baritugo KA, Song HM, Ryu MH, et al., Int. J. Biol. Macromol., 149, 593 (2020)
Brauegg G, Sonnleitner B, Lafferty R, Eur. J. Appl. Microbiol. Biotechnol., 6(1), 29 (1978)
Gong C, Chen C, Chen L, Appl. Biochem. Biotechnol., 39(1), 83 (1993)
Baruah S, Khan MN, Dutta J, Environ. Chem. Lett., 14(1), 1 (2016)
Gupta R, Gautam S, Shukla R, Kuhad RC, J. Environ. Chem. Eng., 5(5), 4573 (2017)
Sarawan C, Suinyuy TN, Sewsynker-Sukai Y, Kana EG, Bioresour. Technol., 286, 121403 (2019)
RUBIO MC, MALDONADO MC, Curr. Microbiol., 31(2), 80 (1995)
Sirisatesuwon C, Ninchan B, Sriroth K, Sugar Tech, 22(2), 274 (2020)
Ehrmann MA, Korakli M, Vogel RF, Curr. Microbiol., 46, 0391 (2003)
Tosun A, Ergun M, J. Chem. Technol. Biotechnol., 82(1), 11 (2007)
Chotineeranat S, Wansuksri R, Piyachomkwan K, Chatakanonda P, Weerathaworn P, Sriroth K, Sugar Tech, 12(2), 120 (2010)
Volodina E, Raberg M, Steinbuchel A, Crit. Rev. Biotechnol., 36(6), 978 (2016)
Baei MS, Najafpour G, Younesi H, Tabandeh F, Eisazadeh H, World Appl. Sci. J., 7(2), 157 (2009)
Ul-Islam M, Ullah MW, Khan S, Park JK, Korean J. Chem. Eng., 37(6), 925 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로