Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 18, 2021
Accepted April 4, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Influence of post-heat treatment on photocatalytic activity in metal-embedded TiO2 nanofibers
1Department of Chemical Engineering, College of Engineering, Wonkwang University, Iksan, Jeonbuk 54538, Korea 2Nanoscale Sciences and Technology Institute, Wonkwang University, Iksan, Jeonbuk 54538, Korea
Korean Journal of Chemical Engineering, July 2021, 38(7), 1522-1528(7), 10.1007/s11814-021-0800-x
Download PDF
Abstract
With the increasing concerns for environmental pollution, photocatalysts have been attracting attention due to their environmentally friendly characteristics, low cost, and simple processing. Titanium dioxide (TiO2) has been commonly used as a photocatalyst owing to its white pigment, excellent photocatalytic activity and low cost; however, its poor pollutant adsorption properties and high electron-hole recombination ratio limit its practical application. Transition metals such as nickel exhibit excellent electron-trapping capability, lowering the rate of electron-hole recombination and facilitating the generation of oxygen free radicals. One-dimensional nanofibers fabricated by electrospinning methods not only develop mesopores but can also make photocatalytic materials with a relatively high specific surface area, thereby increasing the adsorption of pollutants. In this study, transition metal-embedded TiO2 was fabricated by an electrospinning method, and the influence of post-calcination in a reducing atmosphere on the photocatalytic activity was investigated. The photocatalytic properties were performed by decomposition of Rhodamine B under visible light irradiation using fabricated material. Among the investigated samples, Ni-embedded TiO2 nanofibers showed the fastest decomposition of Rhodamine B under visible light irradiation due to a relatively high number of oxygen vacancies, lower Fermi level, small particle size, well-developed mesopores and relatively high specific surface area.
References
Ouyang W, Liu S, Zhao L, Cao L, Jiang S, Hou H, Compos. Commun., 9, 76 (2018)
Jiang L, Wang Y, Feng C, Procedia Eng., 45, 993 (2012)
Mahlambi MM, et al., J. Nanomaterials, 2012, Article ID 302046 (2012).
Huang F, et al., Semiconductor photocatalysis materials-mechanisms and applicaations, IntechOpen Limited, London (2016).
Khojasteh H, Salavati-Niasari M, Mortazavi-Derazkola S, J. Mater. Sci.: Mater. Electron., 27(4), 3599 (2016)
Manzoor M, Rafiq A, Ikram M, Nafees M, Ali S, Int. Nano Lett., 8(1), 1 (2018)
Bashiri R, Norani MM, Kait CF, Sufian S, Adv. Mater. Res., 925, 248 (2014)
Woo S, Kim W, Kim S, Rhee C, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 449, 1151 (2007)
Nakhate GG, Nikam VS, Kanade KG, Arbuj S, Kale BB, Baeg JO, Mater. Chem. Phys., 124(2-3), 976 (2010)
Khore SK, Kadam SR, Naik SD, Kale BB, Sonawane RS, New J. Chem., 42(13), 10958 (2018)
Prabakar K, Takahashi T, Nezuka T, Takahashi K, Nakashima T, Kubota Y, Fulishima A, Renew. Energy, 33(2), 277 (2008)
Song K, Han X, Shao G, J. Alloy. Compd., 551, 118 (2013)
Sakthivel T, Kumar KA, Senthilselvan J, Jagannathan K, J. Mater. Sci.: Mater. Electron., 29(3), 2228 (2018)
Ding D, Ning C, Wang X, RSC Adv., 5(116), 95478 (2015)
Gao B, Wang T, Fan X, Gong H, Guo H, Xia W, Feng Y, Huang X, He J, Inorg. Chem. Front., 4(5), 898 (2017)
Buddee S, Suwanchawalit C, Wongnawa S, Dig. J. Nanomater. Biostruct., 12(3), 829 (2017)
Hirakawa T, Kamat PV, J. Am. Chem. Soc., 127(11), 3928 (2005)
Park JY, Choi KI, Lee JH, Hwnag CH, Choi DY, Lee JW, Mater. Lett., 97(15), 64 (2013)
Guan B, Yu J, Guo S, Yu S, Han S, Nanoscale Adv., 2, 1352 (2020)
Nagaraj G, Senthil R, Boddula R, Ravichandaran K, Curr. Anal. Chem., 17, 279 (2021)
Jing DW, Zhang YJ, Guo LJ, Chem. Phys. Lett., 415(1-3), 74 (2005)
Wang T, Meng X, Liu G, Chang K, Li P, Kang Q, Liu L, Li M, Ouyang S, Ye J, J. Mater. Chem. A, 3(18), 9491 (2015)
Nirmala R, Kim HY, Yi C, Barakat NAM, Navamathavan R, El-Newehy M, Int. J. Hydrog. Energy, 37(13), 10036 (2012)
Albetran H, Dong Y, Low IM, J. Asian Ceram. Societies, 3(4), 292 (2015)
Wang C, Tong Y, Sun Z, Xin Y, Yan E, Huang Z, Mater. Lett., 61(29), 5125 (2007)
Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino JC, J. Am. Ceram. Soc., 89(2), 395 (2006)
Park JY, Kim SS, Metals Mater. Int., 15(1), 95 (2009)
Chronakis IS, J. Mater. Process. Technol., 167(2-3), 283 (2005)
Aryal S, Kim CK, Kim KW, Khil MS, Kim HY, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 28(1), 75 (2008)
Cahyaningsih D, Taufik A, Saleh R, J. Phys.: Conf. Ser., 1442, 012017 (2020)
Rajeh S, Barhoumi A, Mhamdi A, Leroy G, Duponchel B, Amlouk M, Guermazi S, Bull. Mater. Sci., 39, 177 (2016)
Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N, Nature, 418, 164 (2002)
Ding B, Kim CK, Kim HY, Seo MK, Park SJ, Fibers Polym., 5(2), 105 (2004)
Zhang J, Zhou P, Liu J, Yu J, Phys. Chem. Chem. Phys., 16(38), 20382 (2014)
Deka DJ, Kim J, Gunduz S, Aouine M, Millet JMM, Co AC, Ozkan US, Appl. Catal. B: Environ., 286, 119917 (2021)
Kim DS, Han SJ, Kwak SY, J. Colloid Interface Sci., 316(1), 85 (2007)
Chen S, Xiao Y, Wang Y, Hu Z, Zhao H, Xie W, Nanomaterials, 8(4), 245 (2018)
Janotti A, Varley J, Rinke P, Umezawa N, Kresse G, Van de Walle CG, Phys. Rev. B, 81(8), 085212 (2010)
Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y, Nano Lett., 11(7), 3026 (2011)
Feng N, Liu F, Huang M, Zheng A, Wang Q, Chen T, Cao G, Xu J, Fan J, Deng F, Sci. Rep., 6, 1 (2016)
Lepcha A, Maccato C, Mettenborger A, Andreu T, Mayrhofer L, Walter M, Olthof S, Ruoko TP, Klein A, Moseler M, J. Phys. Chem. C, 119, 18835 (2015)
Lee NW, Jung JW, Lee JS, Jang HY, Kim ID, Ryu WH, Electrochim. Acta, 263, 417 (2018)
Kim DH, Choi DK, Kim SJ, Lee KS, Catal. Commun., 9(5), 654 (2008)
Jiang L, Wang Y, Feng C, Procedia Eng., 45, 993 (2012)
Mahlambi MM, et al., J. Nanomaterials, 2012, Article ID 302046 (2012).
Huang F, et al., Semiconductor photocatalysis materials-mechanisms and applicaations, IntechOpen Limited, London (2016).
Khojasteh H, Salavati-Niasari M, Mortazavi-Derazkola S, J. Mater. Sci.: Mater. Electron., 27(4), 3599 (2016)
Manzoor M, Rafiq A, Ikram M, Nafees M, Ali S, Int. Nano Lett., 8(1), 1 (2018)
Bashiri R, Norani MM, Kait CF, Sufian S, Adv. Mater. Res., 925, 248 (2014)
Woo S, Kim W, Kim S, Rhee C, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 449, 1151 (2007)
Nakhate GG, Nikam VS, Kanade KG, Arbuj S, Kale BB, Baeg JO, Mater. Chem. Phys., 124(2-3), 976 (2010)
Khore SK, Kadam SR, Naik SD, Kale BB, Sonawane RS, New J. Chem., 42(13), 10958 (2018)
Prabakar K, Takahashi T, Nezuka T, Takahashi K, Nakashima T, Kubota Y, Fulishima A, Renew. Energy, 33(2), 277 (2008)
Song K, Han X, Shao G, J. Alloy. Compd., 551, 118 (2013)
Sakthivel T, Kumar KA, Senthilselvan J, Jagannathan K, J. Mater. Sci.: Mater. Electron., 29(3), 2228 (2018)
Ding D, Ning C, Wang X, RSC Adv., 5(116), 95478 (2015)
Gao B, Wang T, Fan X, Gong H, Guo H, Xia W, Feng Y, Huang X, He J, Inorg. Chem. Front., 4(5), 898 (2017)
Buddee S, Suwanchawalit C, Wongnawa S, Dig. J. Nanomater. Biostruct., 12(3), 829 (2017)
Hirakawa T, Kamat PV, J. Am. Chem. Soc., 127(11), 3928 (2005)
Park JY, Choi KI, Lee JH, Hwnag CH, Choi DY, Lee JW, Mater. Lett., 97(15), 64 (2013)
Guan B, Yu J, Guo S, Yu S, Han S, Nanoscale Adv., 2, 1352 (2020)
Nagaraj G, Senthil R, Boddula R, Ravichandaran K, Curr. Anal. Chem., 17, 279 (2021)
Jing DW, Zhang YJ, Guo LJ, Chem. Phys. Lett., 415(1-3), 74 (2005)
Wang T, Meng X, Liu G, Chang K, Li P, Kang Q, Liu L, Li M, Ouyang S, Ye J, J. Mater. Chem. A, 3(18), 9491 (2015)
Nirmala R, Kim HY, Yi C, Barakat NAM, Navamathavan R, El-Newehy M, Int. J. Hydrog. Energy, 37(13), 10036 (2012)
Albetran H, Dong Y, Low IM, J. Asian Ceram. Societies, 3(4), 292 (2015)
Wang C, Tong Y, Sun Z, Xin Y, Yan E, Huang Z, Mater. Lett., 61(29), 5125 (2007)
Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino JC, J. Am. Ceram. Soc., 89(2), 395 (2006)
Park JY, Kim SS, Metals Mater. Int., 15(1), 95 (2009)
Chronakis IS, J. Mater. Process. Technol., 167(2-3), 283 (2005)
Aryal S, Kim CK, Kim KW, Khil MS, Kim HY, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 28(1), 75 (2008)
Cahyaningsih D, Taufik A, Saleh R, J. Phys.: Conf. Ser., 1442, 012017 (2020)
Rajeh S, Barhoumi A, Mhamdi A, Leroy G, Duponchel B, Amlouk M, Guermazi S, Bull. Mater. Sci., 39, 177 (2016)
Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N, Nature, 418, 164 (2002)
Ding B, Kim CK, Kim HY, Seo MK, Park SJ, Fibers Polym., 5(2), 105 (2004)
Zhang J, Zhou P, Liu J, Yu J, Phys. Chem. Chem. Phys., 16(38), 20382 (2014)
Deka DJ, Kim J, Gunduz S, Aouine M, Millet JMM, Co AC, Ozkan US, Appl. Catal. B: Environ., 286, 119917 (2021)
Kim DS, Han SJ, Kwak SY, J. Colloid Interface Sci., 316(1), 85 (2007)
Chen S, Xiao Y, Wang Y, Hu Z, Zhao H, Xie W, Nanomaterials, 8(4), 245 (2018)
Janotti A, Varley J, Rinke P, Umezawa N, Kresse G, Van de Walle CG, Phys. Rev. B, 81(8), 085212 (2010)
Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y, Nano Lett., 11(7), 3026 (2011)
Feng N, Liu F, Huang M, Zheng A, Wang Q, Chen T, Cao G, Xu J, Fan J, Deng F, Sci. Rep., 6, 1 (2016)
Lepcha A, Maccato C, Mettenborger A, Andreu T, Mayrhofer L, Walter M, Olthof S, Ruoko TP, Klein A, Moseler M, J. Phys. Chem. C, 119, 18835 (2015)
Lee NW, Jung JW, Lee JS, Jang HY, Kim ID, Ryu WH, Electrochim. Acta, 263, 417 (2018)
Kim DH, Choi DK, Kim SJ, Lee KS, Catal. Commun., 9(5), 654 (2008)