ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 8, 2020
Accepted April 29, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Optimization of basic magenta adsorption onto Fe/Cu nanocomposites synthesized by sweet potato leaf extract using response surface methodology

1School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China 2Henan Center for Outstanding Overseas Scientists, Zhengzhou 450001, China
xlhan@zzu.edu.cn
Korean Journal of Chemical Engineering, August 2021, 38(8), 1556-1563(8), 10.1007/s11814-021-0828-y
downloadDownload PDF

Abstract

Green synthesis of metal nanoparticles using plant extracts as an effective bio-reducing reagent has attracted considerable attention. Fe/Cu nanocomposites synthesized by extracts of sweet potato leaves served to remove basic magenta (BM) from aqueous solution. The adsorption operation conditions of BM on Fe/Cu nanocomposites were optimum by Box-Behnken design (BBD) model of response surface methodology (RSM). The adsorption equilibrium data were well described by the Sips and Redlich-Peterson models. The thermodynamic studies showed that the adsorption process was endothermic and spontaneous. The maximum adsorption capacity from the Sips model was 235.92mg/g at 298 K, which indicated that Fe/Cu nanocomposites had potential application in wastewater treatment. As indicated by pseudo-second order kinetics model, the adsorption of BM onto Fe/Cu nanocomposites could be achieved through the complexation, H-bonding, π-π adsorbate-adsorbent interaction, and electrostatic interaction at different pH values.

References

Zhao R, Wang Y, Li X, Sun B, Wang C, Appl. Mater. Inter., 7, 26649 (2015)
Zeng SY, Duan SX, Tang RF, Li L, Liu CH, Sun DZ, Chem. Eng. J., 258, 218 (2014)
Stawinski W, Wegrzyn A, Danko T, Freitas O, Figueiredo S, Chmielarz L, Chemosphere, 173, 107 (2017)
Fu JW, Chen ZH, Wang MH, Liu SJ, Zhang JH, Zhang JN, Han RP, Xu Q, Chem. Eng. J., 259, 53 (2015)
Ye CC, Zhao FY, Wu JK, Weng XD, Zheng PY, Mi YF, An QF, Gao CJ, Chem. Eng. J., 307, 526 (2017)
Wei XZ, Kong X, Sun CT, Chen JY, Chem. Eng. J., 223, 172 (2013)
Zhang P, Lo I, O'Connor D, Pehkonen S, Cheng HF, Hou DY, J. Colloid Interface Sci., 508, 39 (2017)
Stawinski W, Freitas O, Chmielarz L, Wegrzyn A, Komedera K, Błachowski A, Figueiredo S, Chemosphere, 153, 115 (2016)
Ayati A, Shahrak MN, Tanhaei B, Sillanpaa M, Chemosphere, 160, 30 (2016)
Zhou Y, He Y, Xiang Y, Meng S, Liu X, Yu J, Yang J, Zhang J, Qin P, Lou L, Sci. Total Environ., 646, 29 (2019)
Liu Y, Sun DZ, J. Hazard. Mater., 143(1-2), 448 (2007)
Bhunia SK. Jana NR, Appl. Mater. Inter., 6, 20085 (2014)
Peretti SW, Tompkins CJ, Goodall JL, Michaels AS, J. Membr. Sci., 195, 193 (2001)
Mo JH, Lee YH, Kim J, Jeong JY, Jegal J, Dyes Pigment., 76, 429 (2008)
Li J, Cai J, Zhong L, Cheng HL, Wang H, Ma QM, Appl. Clay Sci., 167, 9 (2019)
Huang LH, Kong JJ, Wang WL, Zhang CL, Niu SF, Gao BY, Desalination, 286, 268 (2012)
Mariana HR, Roberto CS, Ruiz F, Microporous Mesoporous Mater., 276, 183 (2019)
Wang L, Wu XL, Xu WH, Huang XJ, Liu JH, Xu AW, Appl. Mater. Inter., 4, 2686 (2012)
Prasad AS, Mater. Sci. Semicond. Process, 53, 79 (2016)
Das RK, Borthakur BB, Bora U, Mater. Lett., 64, 1445 (2010)
Lou F, Yang D, Chen ZL, Megharaj M, Naidu R, J. Hazard. Mater., 296, 37 (2015)
Shahwan T, Abu Sirriah S, Nairat M, Boyaci E, Eroglu AE, Scott TB, Hallam KR, Chem. Eng. J., 172(1), 258 (2011)
Wang T, Jin XY, Chen ZL, Megharaj M, Naidu R, Sci. Total Environ., 466, 210 (2014)
Zhang P, Hou DY, O’Connor D, Li XR, Pehkonen S, Varma RS, Wang X, Sustainable. Chem. Eng., 6, 9229 (2018)
Yamashita T, Hayes P, Appl. Surf. Sci., 254(8), 2441 (2008)
Weng XL, Guo MY, Luo F, Chen ZL, Chem. Eng. J., 308, 904 (2017)
Lara-Vasquez EJ, Solache-Riosb M, Gutierrez E, J. Environ. Chem. Eng., 4, 1594 (2016)
Wei YF, Fang ZQ, Zheng LC, Tsang EP, Appl. Surf. Sci., 299, 322 (2017)
Vazquez G, Fontenla E, Santos J, Freire MS, Gonzalez-Alvarez J, Antorrena G, Ind. Crop. Prod., 28, 279 (2008)
Wei AH, Liu B, Zhao H, Chen Y, Wang WL, Ma Y, Yang HQ, Liu SZ, Chem. Eng. J., 239, 141 (2014)
Yavari S, Malakahmad A, Sapari NB, Yavari S, Process Saf. Environ. Protect., 109, 509 (2017)
Wan YB, Liu X, Liu PL, Zhao L, Zou WH, Sci. Total. Environ., 639, 428 (2018)
Wang JL, Guo X, Chemosphere, 258, 127279 (2020)
Zhou T, Fang L, Wang X, Han M, Zhang S, Han R, Desalin. Water Treat., 70, 294 (2017)
Hamdaoui O, Naffrechoux E, J. Hazard. Mater., 147(1-2), 401 (2007)
Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2 (2010)
Yu JX, Zhu J, Feng LY, Chi RA, J. Colloid Interface Sci., 451, 153 (2015)
Li SF, Tao M, Xie YD, Desalin. Water. Treat., 57, 1 (2015)
Guan Y, Wang SM, Wang X, Sun C, Wang YB, Hu LJ, Microporous Mesoporous Mater., 265, 266 (2018)
Liu Y, J. Chem. Eng. Data, 54(7), 1981 (2009)
Wang JL, Guo X, J. Hazard. Mater., 390, 122156 (2020)
Guo X, Wang JL, J. Mol. Liq., 288, 111100 (2019)
Zhang X, Zhou J, Fan Y, Liu J, Korean J. Chem. Eng., 37(9), 1445 (2020)
Lara-Vasquez EJ, Solache-Rios M, Gutierrez-Segura E, J. Environ. Chem. Eng., 4, 1594 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로