ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 10, 2021
Accepted May 3, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Thermo-hydraulic performance of nanofluids in a bionic fractal microchannel heat sink with traveling-wave fins

School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
qicong@cumt.edu.cn
Korean Journal of Chemical Engineering, August 2021, 38(8), 1592-1607(16), 10.1007/s11814-021-0836-y
downloadDownload PDF

Abstract

Aiming at high working power and heat dissipation of electronic components, this study developed a novel bionic fractal microchannel heat sink with traveling-wave fins based on fractal theory and disk-like tree-like structure. α-Al2O3-water nanofluid was chosen as the working fluid instead of water in the microchannel heat sink. Thermohydraulic performance of nanofluids in the bionic fractal microchannel heat sink with traveling-wave fins was simulated numerically, and its comprehensive performance was studied. The main control parameters of this study include the depths of the traveling wave structure (h=0.00005 m, 0.00010m, 0.00015 m, 0.00020 m, 0.00025 m), the eccentricity ratios of the traveling wave structure (e=0, 0.1, 0.2, 0.3, 0.4) and Reynolds numbers (Re=200-1,000). Results indicate that the surface temperature of the microchannel heat sink decreases with Reynolds number and depth of traveling wave structure. The use of traveling ribs at fractal corners can convert the inhomogeneous flow caused by the fractal effect into a stable horizontal channel flow more efficiently, while the temperature uniformity increases with depth and eccentricity ratio. Results also show that the traveling wave structure has the best overall performance when the eccentricity ratio of the traveling wave structure is 0.1 or 0.2, and the depth is 0.00020 m or 0.00025 m.

References

Li H, He Y, Wang C, Wang X, Hu Y, Appl. Therm. Eng., 236, 117 (2019)
Chen M, Wang X, Hu Y, He Y, J. Quant. Spectrosc. Ra., 250, 107029 (2020)
Dehkordi KG, Karimipour A, Afrand M, Toghraie D, Isfahani AHM, Int. J. Thermophys., 41, 132 (2020)
Sheikholeslami M, Gerdroodbary MB, Mousavi SV, Ganji DD, Moradi R, J. Magn. Magn. Mater., 460, 302 (2018)
Tuckerman DB, Pease RFW, IEEE. Electr. Device. L., 2(5), 126 (1981)
Sajadifar SA, Karimipour A, Toghraie D, Eur. J. Mech. B-Fluid., 61, 25 (2017)
Rostami S, Ahmadi-Danesh-Ashtiani H, Toghraie D, Fazaeli R, Physica A., 548, 123879 (2020)
Hua C, Wang X, Gao X, Zheng H, Han X, Chen G, Appl. Therm. Eng., 126, 1058 (2017)
Li Z, Shahsavar A, Niazi K, Al-Rashed AA, Rostami S, Int. Commun. Heat Mass.Transf., 115, 104628 (2020)
Choi SU, Eastman JA, ASME-Publications-Fed, 231, 99 (1995)
Bahiraei M, Mazaheri N, Moayedi H, Int. J. Heat. Mass Transf., 151, 119419 (2020)
Kumar A, Sugunamma V, Sandeep N, Ramana R, Multidiscip. Model. Mater. Struct., 15(1), 103 (2018)
Sheikholeslami M, Abelman S, Eng. Computation., 35(5), 1855 (2017)
Izadi M, Bastani B, Sheremet MA, Adv. Powder Technol., 31(6), 2493 (2020)
Werner DH, Ganguly S, IEEE. Antenn. Propag. M., 45(1), 38 (2003)
Bejan A, Errera MR, Fractals., 5(04), 685 (1997)
Bejan A, J. Heat Transf., 122(3), 430 (2000)
Pence DV, Nanosc. Microsc. Therm., 6(4), 319 (2003)
Varmazyar M, Habibi M, Amini M, Pordanjani AH, Afrand M, Vahedi SM, Powder Technol., 366, 164 (2020)
He W, Mashayekhi R, Toghraie D, Akbari OA, Tlili I, Int. Commun. Heat Mass Transf., 117, 104700 (2020)
Chen Y, Cheng P, Int. J. Heat. Mass Transf., 45, 2643 (2002)
Ma P, Fu T, Zhu C, Ma Y, Korean J. Chem. Eng., 36(1), 21 (2019)
Zhang LX, Peng DY, Lyu WJ, Xin F, Chem. Eng. J., 263, 452 (2015)
Emerson DR, Cieslicki K, Gu X, Barber RW, Lab Chip, 6(3), 447 (2006)
Izadi M, Pour SH, Yasuri AK, Chamkha AJ, J. Therm. Anal. Calorim., 136, 2461 (2019)
Bahiraei M, Monavari A, Appl. Therm. Eng., 179, 115621 (2020)
Bao K, Hua C, Wang X, Han X, Chen G, Int. J. Heat. Mass Transf., 154, 119672 (2020)
Talebizadehsardari P, Rahimzadeh H, Ahmadi G, Inthavong K, Keshtkar MM, Moghimi MA, Adv. Powder Technol., 31(8), 3134 (2020)
Rostami S, Aghaei A, Joshaghani AH, Hezaveh HM, Sharifpur M, Meyer JP, J. Therm. Anal. Calorim., 143, 1569 (2021)
Arshad A, Jabbal M, Sardari PT, Bashir MA, Faraji H, Yan Y, Therm. Sci. Eng. Prog., 18, 100520 (2020)
Herman C, Kang E, Int. J. Heat Mass Transf., 45(18), 3741 (2002)
Qi C, Chen T, Tu J, Wang Y, Korean J. Chem. Eng., 37(12), 2104 (2020)
Guzman AM, Cardenas MJ, Urzua FA, Araya PE, Int. J. Heat Mass Transf, 52(15-16), 3778 (2009)
Kim DY, Kim JM, Korean J. Chem. Eng., 36(6), 837 (2019)
Qi C, Chen T, Wang Y, Yang L, Korean J. Chem. Eng., 37(9), 1466 (2020)
Qi C, Hu JD, Liu MN, Guo LX, Rao ZH, Energy Conv. Manag., 153, 557 (2017)
Yan SR, Golzar A, Sharifpur M, Meyer JP, Liu DH, Afrand M, Int. J. Mech. Sci., 185, 105832 (2020)
Tian MW, Rostami S, Aghakhani S, Goldanlou AS, Qi C, Int. J. Mech. Sci., 189, 105975 (2021)
Li Z, Sheikholeslami M, Jafaryar M, Shafee A, Chamkha AJ, J. Mol. Liq., 266, 797 (2018)
Hu Y, Shi L, Zhang Z, He Y, Zhu J, Energy Conv. Manag., 213, 112829 (2020)
Li H, He Y, Wang X, Liu D, Liu Z, J. Alloy. Compd., 773, 743 (2019)
Sheikholeslami M, Arabkoohsar A, Khan I, Shafee A, Li Z, J. Clean Prod., 221, 885 (2019)
Shastry DMC, Arunachala UC, J. Energy Storage, 28, 101312 (2020)
Wang X, Li Y, Yan Y, Wright E, Gao N, Chen G, Int. J. Refrig., 119, 316 (2020)
Eisapour M, Eisapour AH, Hosseini MJ, Talebizadehsardari P, Appl. Energy, 266, 114849 (2020)
Sandeep HM, Arunachala UC, Renew. Sust. Energ. Rev., 69, 1218 (2017)
Peng Y, Liu WY, Chen W, Wang NL, Int. J. Heat Mass Transf., 71, 79 (2014)
Fan F, Qi C, Liu Q, Case. Stud. Therm. Eng., 22, 100761 (2020)
Qi C, Wang Y, Tang J, Asia-Pac. J. Chem. Eng., 15(4), e2482 (2020)
Yan W, Li C, Ye W, Heat Transf. Asian Res., 48, 2329 (2019)
Ma DD, Xia GD, Wang J, Yang YC, Jia YT, Zong LX, Energy Conv. Manag., 152, 157 (2017)
Li YC, Kalbasi R, Nguyen Q, Afrand M, Powder Technol., 367, 464 (2020)
Rostami S, Zarringhalam M, Alizadeh AA, Toghraie D, Goldanlou AS, J. Mol. Liq., 312, 113130 (2020)
Karimipour A, D’Orazio A, Shadloo MS, Physica E., 86, 146 (2017)
Kumar KA, Reddy JR, Sugunamma V, Sandeep N, Alex. Eng. J., 57, 435 (2018)
Izadi M, Javanahram M, Zadeh SMH, Jing D, Chinese J. Chem. Eng., 28(2), 329 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로