ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 3, 2021
Accepted May 3, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Enhanced performance of lanthanum orthoferrite/chitosan nanocomposites for adsorptive photocatalytic removal of Reactive Black 5

1School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia 2Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia 3Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia 4Department of Chemistry, Yobe State University, Damaturu, Yobe State, Nigeria 5Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia
Korean Journal of Chemical Engineering, August 2021, 38(8), 1648-1659(12), 10.1007/s11814-021-0835-z
downloadDownload PDF

Abstract

New lanthanum orthoferrite (LaFeO3)/chitosan nanocomposites were synthesized with different chitosan loadings (15 and 35%). Their adsorptive photocatalytic activity in the removal of Reactive Black 5 (RB5) was studied by manipulating the pH of the RB5 solution (pH 3, pH 6, pH 9), the catalyst loading (1 g L-1, 2 g L-1, and 3 g L-1), and the initial concentration of RB5 (30mg L-1, 50mg L-1, and 70 mg L-1) under 100W LED light. The nanocomposites have a nanocrystalline structure similar to LaFeO3 with a lower SBET and PV but a higher PR. The LaFeO3 was distributed well on chitosan matrices with variations in the elemental composition. The band gap was gradually decreased with increased chitosan loading. The nanocomposite with 15% chitosan loading (LC15) resulted as the most prominent photocatalyst with the highest removal of RB5 up to 98.5% under experimental conditions of pH 6, 2 g L-1 of catalyst loading, and 30mg L-1 of initial RB5 concentration. The LC15 showed good stability, wherein the degradation efficiency was more than 90% after the fifth cycle with no significant change in the chemical properties. This work provides a technique to improve the removal of recalcitrant dyes through the processing of adsorptive photocatalysis utilizing adsorbent and perovskite.

References

Farshid G, Mahsa M, Electrooxidation processes for dye degradation and colored wastewater treatment, Advanced nanomaterials for wastewater remediation, CRC Press, Boca Raton, Florida (2016).
PetrucciE, Palma LD, Lavecchia R, Zuorro A, J. Ind. Eng. Chem., 26, 116 (2015)
Ramı´rez C, Saldana A, Herna´ndez B, Acero R, Guerra R, Garcia-Segura S, Brillas E, Peralta-Herna´ndez JM, J. Ind. Eng. Chem., 19(2), 571 (2013)
Chequer FMD, Dorta D, Oliveira DPD, in Advances in treating textile effluent, IntechOpen, London, United Kingdom (2011).
Nikfar S, Jaberidoost M, in Encyclopedia of toxicology (Third Edition), Academic Press, Oxford (2014).
Semiz L, Polym. Bull., 77(6), 3047 (2020)
Garg A, Sangal VK, Bajpai PK, Desalin. Water Treat., 57, 18003 (2016)
El Bouraie M, El Din WS, Sustain. Environ. Res., 26, 209 (2016)
Cınar S, Kaynar UH, Aydemir T, Kaynar SC, Ayvacıklı M, Int. J. Biol. Macromol., 96, 459 (2017)
Erdem B, Erdem M, Ozcan AS, Adsorption, 22, 767 (2016)
Wojnarovits L, Takacs E, Radiat. Phys. Chem., 77, 225 (2008)
Pocostales P, Alvarez P, Beltran FJ, Chem. Eng. J., 168(3), 1289 (2011)
Rao YF, Luo HJ, Wei CH, Luo LF, J. Cent. South Univ. Technol., 17, 300 (2010)
Wang Y, Wang Q, Zhan X, Wang F, Safdar M, He J, Nanoscale, 5, 8326 (2013)
Gutierrez-Mata AG, Velazquez-Martinez S, Alvarez-Gallegos A, et al., Int. J. Photoenergy, 2017, 27 (2017)
Chong MN, Jin B, Chow CWK, Saint C, Water Res., 44, 2997 (2010)
Foukal P, Solar astrophysics, John Wiley & Sons, New York (1990).
Sakib AAM, Masum SM, Hoinkis J, Islam R, Molla MAI, J. Compos. Sci., 3, 91 (2019)
Mohagheghian A, Karimi SA, Yang JK, Shirzad-Siboni M, J. Adv. Oxid. Technol., 18, 61 (2015)
Fouda A, Hassan SED, Saied E, Azab MS, J. Environ. Chem. Eng., 9, 104693 (2021)
Hashem EM, Hamza MA, El-Shazly AN, Abd El-Rahman SA, El-Tanany EM, Mohamed RT, Allam NK, Chemosphere, 277, 128730 (2021)
Sabzehmeidani MM, Karimi H, Ghaedi M, Polyhedron, 170, 160 (2019)
Villa K, Dekanovsky L, Plutnar J, Kosina J, Pumera M, Adv. Funct. Mater., 30, 200707 (2020)
Thirumalairajan S, Girija K, Hebalkar NY, Mangalaraj D, Viswanathan C, Ponpandian N, RSC Adv., 3, 7549 (2013)
Humayun M, Qu Y, Raziq F, Yan R, Li Z, Zhang X, Jing L, Environ. Sci. Technol., 50, 13600 (2016)
Xiang S, Zhang Z, Gong G, Wu Z, Sun L, Ye C, Lin C, Mater. Lett., 216, 1 (2018)
Peng K, Fu L, Yang H, Ouyang J, Sci. Rep., 6, 19723 (2016)
Shukla SK, Mishra AK, Arotiba OA, Mamba BB, Int. J. Biol. Macromol., 59, 46 (2013)
Pal P, Pal A, Nakashima K, Yadav BK, Chemosphere, 266, 128934 (2021)
Saravanan R, Aviles J, Gracia F, Mosquera E, Gupta VK, Int. J. Biol. Macromol., 109, 1239 (2018)
Al-Naamani L, Dobretsov S, Dutta J, Burgess JG, Chemosphere, 168, 408 (2017)
Ahmed MA, Abdelbar NM, Mohamed AA, Int. J. Biol. Macromol., 107, 1046 (2018)
Qi XW, Zhou J, Yue ZX, Gui ZL, Li LT, Mater. Chem. Phys., 78(1), 25 (2003)
Hao X, Zhang Y, Mater. Lett., 197, 120 (2017)
Queiroz M, Melo K, Sabry D, Sassaki G, Rocha H, Mar. Drugs, 13, 141 (2014)
Li L, Wang X, Zhang YG, Mater. Res. Bull., 50, 18 (2014)
Parida KM, Reddy KH, Martha S, Das DP, Biswal N, Energy, 35, 12161 (2010)
Aizat A, Aziz F, Z.M M. Yusop, Jaafar J, Yusof N, Salleh WNW, Ismail AF, Mal. J. Fund. Appl. Sci., 15, 462 (2019)
Li CM, Yu SY, Dong HJ, Liu CB, Wu HJ, Che HN, Chen G, Appl. Catal. B: Environ., 238, 284 (2018)
Sing K, Pure Appl. Chem., 54, 2201 (1982)
Yusof NF, Mehamod FS, Suah FBM, J. Environ. Chem. Eng., 7, 103007 (2019)
Ohtani B, Phys. Chem. Chem. Phys., 16, 1788 (2014)
Acharya S, Padhi DK, Parida KM, Catal. Today, 353, 220 (2020)
Zhu YF, Xu SB, Yi D, React. Funct. Polym., 70(5), 282 (2010)
Li Y, Lu AH, Wang CQ, Wu XL, Sol. Energy Mater. Sol. Cells, 92(8), 953 (2008)
Akpan UG, Hameed BH, J. Hazard. Mater., 170(2-3), 520 (2009)
Torres MA, Beppu MM, Santana CC, Braz. J. Chem. Eng., 24, 325 (2007)
Kanhere P, Chen Z, Molecules, 19, 19995 (2014)
Shet A, Shetty KV, Environ. Sci. Pollut., 23, 20055 (2016)
Saratale RG, Noh HS, Song JY, Kim DS, J. Environ. Sci. Heal. A, 49, 1542 (2014)
Janus M, Kusiak-Nejman E, Morawski AW, React. Kinet. Mech. Cat., 103, 279 (2011)
Dougna AA, Gombert B, Kodom T, Djaneye-Boundjou G, Boukari SOB, Leitner NKV, Bawa LM, J. Photochem. Photobiol. A-Chem., 305, 67 (2015)
Wu Y, Wang H, Tu W, Liu Y, Tan YZ, Yuan XZ, Chew JW, J. Hazard. Mater., 347, 412 (2018)
Bilal M, Rasheed T, Iqbal HMN, Hu H, Wang W, Zhang X, Environ. Manage., 61, 171 (2018)
Ivanchina E, Ivashkina E, Dolganova I, Frantsina E, Dolganov I, Chem. Eng. J., 329, 250 (2017)
Neelgund GM, Bliznyuk VN, Oki A, Appl. Catal. B: Environ., 187, 357 (2016)
Yahya N, Aziz F, Jaafar J, Lau WJ, Yusof N, Salleh WNW, Ismail AF, Aziz M, Arab. J. Sci. Eng., 46, 6153 (2021)
Habibi MH, Hassanzadeh A, Mahdavi S, J. Photochem. Photobiol. A-Chem., 172, 89 (2005)
Mohamed MA, Zain MFM, Minggu LJ, Kassim MB, Amin NAS, Salleh WNW, Salehmin MNI, Nasir MFM, Hir ZAM, Appl. Catal. B: Environ., 236, 265 (2018)
Liu XQ, Cai L, Appl. Surf. Sci., 483, 875 (2019)
Sarvestani MRJ, Doroudi Z, J. Water Environ. Nanotechnol., 5, 180 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로