ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 14, 2021
Accepted April 11, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synergistic effect of sono-photocatalytic processes on sludge disintegration

Engineering Faculty, Department of Environmental Engineering, Sivas Cumhuriyet University, 58140, Sivas, Turkey
Korean Journal of Chemical Engineering, August 2021, 38(8), 1660-1668(9), 10.1007/s11814-021-0808-2
downloadDownload PDF

Abstract

The synergistic effect of the combination of sono-photocatalytic oxidation and Fenton reagents was investigated on sewage sludge disintegration. In this context, the simultaneous effect of ultrasound (US) and UV irradiation was studied with variable parameters such as the duration of photocatalysis, catalyst amount and different UV light. The optimum amount of TiO2 and Fenton reagent determined in the sono-photocatalytic process was kept constant. Different combinations of advanced oxidation processes (AOPs) showed different degree of disintegration (DD). While H2O2 added to sono-photocatalytic application with TiO2 contributed to the increase of DD, iron addition caused a decrease in DD. This decrease was more in Fe2+ use than Fe0. DD was determined as 18.35%, 20.60% and 32.58% in TiO2/UVA, TiO2/H2O2/UVA, and TiO2/H2O2/UVA/US processes, respectively. In TiO2/UVB process DD was found to be 17.60%, while it reached 30.34% in TiO2/UVB/US, 43.82% in TiO2/CFP/UVB/US and 52.81% in TiO2/MFP/UVB/ US. In the kinetic study, it was determined that all processes comply with zeroth order kinetics. The use of ultrasound in all processes increased the germination percentage, which expresses the toxicity of the sludge, up to 100%. After sono-photocatalytic disintegration, the sludge volume decreased by 19.2% to 60% according to values of volumeweighted average. It was concluded that the sono-photocatalytic process has an important effect on sludge disintegration, which is an effective method for sludge minimization. In addition, it was determined that the synergistic effect of fenton reagents added to the process was strong and the combined use of these two processes increased the DD value from 17.60% to 52.81%.

References

Liu Y, Chemosphere, 50, 1 (2003)
Øegaard H, Water Sci. Technol., 49, 31 (2004)
Nagao N, Matsuyama T, Yamamoto H, Toda T, Process Biochem., 39(1), 37 (2003)
Ye FX, Ji HZ, Ye YF, J. Hazard. Mater., 219, 164 (2012)
Babaei AA, Golshan M, Kakavandi B, Process Saf. Environ. Protect., 149, 35 (2021)
Al-Mamun MR, Kader S, Islam MS, Khan MZH, J. Environ. Chem. Eng., 7, 103248 (2019)
Anjum M, Al-Makishah NH, Barakat MA, Process Saf. Environ. Prot., 102, 615 (2016)
Deng Y, Englehardt JD, Water Res., 40, 3683 (2006)
Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
Stucchi M, Bianchi CL, Argirusis C, Pifferi V, Neppolian B, Cerrato G, Boffito DC, Ultrason. Sonochem., 40, 282 (2018)
Guo Q, Zhou C, Ma Z, Yang X, Adv. Mater., 31, 190199 (2019)
Jaafarzadeh N, Takdastan A, Jorfi S, Ghanbari F, Ahmadi M, Barzegar G, J. Mol. Liq., 256, 462 (2018)
Lucas MS, Peres JA, Dyes Pigment., 71, 236 (2006)
Gharaee A, Khosravi-Nikou MR, Anvaripour B, J. Ind. Eng. Chem., 79, 181 (2019)
Vaishnave P, Kumar A, Ameta R, Punjabi PB, Ameta SC, Arabian J. Chem., 7, 981 (2014)
Sponza DT, Oztekin R, J. Chem. Eng. Process Tech., 4, 147 (2013)
Serna-Galvis EA, Botero-Coy AM, Martinez-Pachon D, et al., Water Res., 154, 349 (2019)
Ahmedchekkat F, Medjram MS, Chiha M, Al-bsoul AMA, Chem. Eng. J., 178, 244 (2011)
Al-Bsoul A, Al-Shannag M, Tawalbeh M, Al-Taani AA, Lafi WK, Al-Othman A, Alsheyab M, Sci. Total Environ., 700, 134576 (2020)
Schieppati D, Galli F, Peyot ML, Yargeau V, Bianchi CL, Boffito DC, Ultrason. Sonochem., 54, 302 (2019)
Babu SG, Karthik P, John MC, Lakhera SK, Ashokkumar M, Khim J, Neppolian B, Ultrason. Sonochem., 50, 218 (2019)
Yildiz S, Olabi A, Waste and Biomass Valorization, 1 (2021).
Bethi B, Sonawane SH, Rohit GS, Holkar CR, Pinjari DV, Bhanvase BA, Pandit AB, Ultrason. Sonochem., 28, 150 (2016)
Isari AA, Hayati F, Kakavandi B, Rostami M, Motevassel M, Dehghanifard E, Chem. Eng. J., 392, 123685 (2020)
Dukkancı M, Vinatoru M, Mason TJ, Ultrason. Sonochem., 21, 846 (2014)
Sun X, Liu J, Ji L, Wang G, Zhao S, Yoon JY, Chen S, Sci. Total Environ., 737, 139606 (2020)
Sun X, You W, Xuan X, Ji L, Xu X, Wang G, Zhao S, Boczkaj G, Yoon JY, Chen S, Chem. Eng. J., 128600, 2021
Sun X, Xuan X, Song Y, Jia X, Ji L, Zhao S, Yoon JY, Chen S, Liu J, Wang G, Ultrason. Sonochem., 70, 105311 (2021)
Davidsson A, la Cour Jansen J, Vatten, 62, 335 (2006)
Wang QH, Kuninobu M, Kakimoto K, Ogawa HI, Kato Y, Bioresour. Technol., 68(3), 309 (1999)
Lu D, Xiao K, Chen Y, Soh YNA, Zhou Y, Water Res., 142, 138 (2018)
Kim DH, Jeong E, Oh SE, Shin HS, Water Res., 44, 3093 (2010)
Wang Y, Pan Y, Li X, Zhang K, Zhu T, Water Environ. Res., 91, 665 (2019)
Man X, Ning X, Zou H, Liang J, Sun J, Lu X, Sun J, Chemosphere, 191, 839 (2018)
Gong C, Jiang J, Li D, Sci. Total Environ., 532, 495 (2015)
Yildiz S, Comert A, Int. J. Environ. Health Res., 30, 89 (2020)
Yildiz S, Olabi A, Chem. Eng. Technol., 44(1), 95 (2021)
Kallel M, Belaid C, Mechichi T, Ksibi M, Elleuch B, Chem. Eng. J., 150(2-3), 391 (2009)
Jin BD, Wang SY, Xing LQ, Li BK, Peng YZ, Bioresour. Technol., 200, 587 (2016)
Chandra TS, Malik SN, Suvidha G, Padmere ML, Shanmugam P, Mudliar SN, Bioresour. Technol., 158, 135 (2014)
Malik SN, Ghosh PC, Vaidya AN, Waindeskar V, Das S, Mudliar SN, Water Sci. Technol., 76, 1001 (2017)
Parsons S, Advanced oxidation processes for water and wastewater treatment, IWA Publishing: London, UK (2005).
Wang F, Lu S, Ji M, Ultrason. Sonochem., 13, 334 (2006)
Oveisi M, Mahmoodi NM, Asli MA, J. Clean Prod., 222, 669 (2019)
Wen T, Zhao Y, Jiao X, Yang G, Zhang Z, Wang W, Zhang T, Zhang Q, Song S, J. Clean Prod., 293, 126184 (2021)
Kotz JC, Treichel PM, Townsend J, Chemistry and chemical reactivity, Cengage Learning, Boston, USA (2012).
Arana J, Melian JAH, Rodriguez JMD, Diaz OG, Viera A, Pena JP, Sosa PMM, Jimenez VE, Catal. Today, 76(2-4), 279 (2002)
Bashiri F, Khezri SM, Kalantary RR, Kakavandi B, J. Mol. Liq., 314, 113608 (2020)
Deng Y, Zhao R, Curr. Pollut. Rep., 1, 167 (2015)
Kakavandi B, Ahmadi M, Ultrason. Sonochem., 56, 25 (2019)
Silva TF, Ferreira R, Soares PA, Manenti DR, Fonseca A, Saraiva I, Boaventura RAR, Vilar VJ, J. Environ. Manage., 164, 32 (2015)
Welter JB, Soares EV, Rotta EH, Seibert D, J. Environ. Chem. Eng., 6, 1390 (2018)
Muller JA, Winter A, Strunkmann G, Water Sci. Technol., 49, 97 (2004)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로