Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 1, 2021
Accepted March 28, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Combination of inertial focusing and magnetoporetic separation in a novel microdevice
Department of Mechanical Engineering, Shahrekord University, Shahrekord, Iran
Korean Journal of Chemical Engineering, August 2021, 38(8), 1686-1702(17), 10.1007/s11814-021-0795-3
Download PDF
Abstract
Separation of microparticles is of great importance in diagnostic, chemical, and biological analysis, as well as food processing and environmental assessments. In the present work, a novel microfluidic device is designed to focus microparticles based on inertial and magnetophoretic impacts. Three permanent magnets are mounted in the vicinity of the microchannel to separate the diamagnetic particles suspended in a ferrofluid by applying a negative magnetophoretic force. Polystyrene particles with three sizes of 5, 10, and 15 μm are separated from each other using the proposed device with 100% separation efficiency. The results show that high purity of particle collection can be achieved using Halbach array of magnets at Reynolds numbers of 100 and 110. The influence of inlet flow velocity, magnets… configuration, and their distance from the microchannel is investigated and the optimal situations are determined.
References
Sajeesh P, Sen AK, Microfluid Nanofluidics, 17, 1 (2014)
Bayareh M, Chem. Eng. Process., 153, 107984 (2020)
Chiu YY, Huang CK, Lu YW, Biomicrofluidics, 10, 011906 (2016)
Tran TS, Ho BD, Beech JP, Tegenfeldt JO, Lab Chip, 17, 3592 (2017)
Yamada M, Nakashima M, Seki M, Anal. Chem., 76(18), 5465 (2004)
Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I, Lab Chip, 9, 2973 (2009)
Doh I, Cho YH, Sens. Actuators A-Phys., 121, 59 (2005)
Baresch D, Thomas JL, Marchiano R, Phys. Rev. Lett., 116, 024301 (2016)
Abdulla A, Liu W, Gholamipour-Shirazi A, Sun J, Ding X, Anal. Chem., 90, 4397 (2018)
Zhou Y, Ma Z, Ai Y, Microsyst. Nanoeng., 4, 1 (2018)
Di Carlo D, Irimia D, Tompkins RG, Toner M, Proc. Natl. Acad. Sci., 104, 18892 (2007)
Dutz S, Hayden ME, Schaap A, Stoeber B, Hafeli UO, J. Magn. Magn. Mater., 324, 3791 (2012)
Russom A, Gupta AK, Nagrath S, Di Carlo D, Edd JF, Toner M, New J. Phys., 11, 075025 (2009)
Martel JM, Toner M, Annu. Rev. Biomed. Eng., 16, 371 (2014)
Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I, Lab Chip, 8, 1906 (2008)
Al-Halhouli A, Al-Fagheri W, Alhamarneh B, Hecht L, Dietzel A, Micromachines, 9, 171
Sun J, Li M, Liu C, Zhang Y, Liu D, Liu W, Hu G, Jiang X, Lab Chip, 12, 3952 (2012)
Yeh P, Dai Z, Bergeron M, Zhang Z, Lin M, Cao X, Sens. Actuators B-Chem., 252, 606 (2017)
Rzhevskiy AS, Bazaz SR, Ding L, Kapitannikova A, Sayyadi N, et al., Cancers, 12, 81 (2020)
Munaz A, Shiddiky MJ, Nguyen NT, Biomicrofluidics, 12, 031501 (2018)
Munaz A, Shiddiky MJ, Nguyen NT, Sens. Actuators B-Chem., 275, 459 (2018)
Zhu T, Cheng R, Lee SA, Rajaraman E, Eiteman MA, Querec TD, Unger ER, Mao L, Microfluidic Nanofluidics, 13, 645 (2012)
Zhang J, Yan S, Yuan D, Zhao Q, Tan SH, Nguyen NT, Li W, Lab Chip, 16, 3947 (2016)
Zhao W, Cheng R, Lim SH, Miller JR, Zhang W, Tang W, Xie J, Mao L, Lab Chip, 17, 2243 (2017)
Wu J, Cui Y, Xuan S, Gong X, Microfluidic Nanofluidics, 22, 103 (2018)
Xue M, Xiang A, Guo Y, Wang L, Wang W, Ji G, Lu Z, RSC Adv., 9, 38496 (2019)
Ookawara S, Street D, Ogawa K, Chem. Eng. Sci., 61(11), 3714 (2006)
Han X, Feng Y, Cao Q, Li L, Microfluidic Nanofluidics, 18, 1209 (2015)
Warkiani ME, Tay AKP, Guan G, Han J, Sci. Rep., 5, 11018 (2015)
Martel JM, Toner M, Phys. Fluids, 24, 032001 (2012)
Kim DY, Kim JM, Korean J. Chem. Eng., 36(6), 837 (2019)
Thanormsridetchai A, Ketpun D, Srituravanich W, Piyaviriyakul P, Sailasuta A, Jeamsaksiri W, Sripumkhai W, Pimpin A, J. Mech. Sci. Technol., 31, 5397 (2017)
Ozbey A, Karimzadehkhouei M, Akgonul S, Gozuacik D, Kosar A, Sci. Rep., 6, 38809 (2016)
Shiriny A, Bayareh M, Meccanica, 55, 1903 (2020)
Vanderlinde J, Classical electromagnetic theory, Springer, Netherland (2006).
Fateen SEK, Magdy M, Chem. Eng. Res. Des., 95, 69 (2015)
Cheng R, Zhu T, Mao L, Microfluidic Nanofluidics, 16, 1143 (2014)
Zhou Y, Kumar DT, Kale A, DuBose J, Song Y, Wang J, Li D, Xuan X, Biomicrofluidics, 9, 044102 (2015)
Chen Q, Li D, Lin J, Wang M, Xuan X, Anal. Chem., 89, 6915 (2017)
Shiriny A, Bayareh M, Chem. Eng. Sci., 229, 116102 (2021)
Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DSW, Lim WT, Han J, Bhagat AAS, Lim CT, Sci. Rep., 3, 1259 (2013)
He Y, Luo L, Huang S, Int. J. Mod. Phys. B, 33, 195004 (2019)
Bayareh M, Chem. Eng. Process., 153, 107984 (2020)
Chiu YY, Huang CK, Lu YW, Biomicrofluidics, 10, 011906 (2016)
Tran TS, Ho BD, Beech JP, Tegenfeldt JO, Lab Chip, 17, 3592 (2017)
Yamada M, Nakashima M, Seki M, Anal. Chem., 76(18), 5465 (2004)
Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I, Lab Chip, 9, 2973 (2009)
Doh I, Cho YH, Sens. Actuators A-Phys., 121, 59 (2005)
Baresch D, Thomas JL, Marchiano R, Phys. Rev. Lett., 116, 024301 (2016)
Abdulla A, Liu W, Gholamipour-Shirazi A, Sun J, Ding X, Anal. Chem., 90, 4397 (2018)
Zhou Y, Ma Z, Ai Y, Microsyst. Nanoeng., 4, 1 (2018)
Di Carlo D, Irimia D, Tompkins RG, Toner M, Proc. Natl. Acad. Sci., 104, 18892 (2007)
Dutz S, Hayden ME, Schaap A, Stoeber B, Hafeli UO, J. Magn. Magn. Mater., 324, 3791 (2012)
Russom A, Gupta AK, Nagrath S, Di Carlo D, Edd JF, Toner M, New J. Phys., 11, 075025 (2009)
Martel JM, Toner M, Annu. Rev. Biomed. Eng., 16, 371 (2014)
Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I, Lab Chip, 8, 1906 (2008)
Al-Halhouli A, Al-Fagheri W, Alhamarneh B, Hecht L, Dietzel A, Micromachines, 9, 171
Sun J, Li M, Liu C, Zhang Y, Liu D, Liu W, Hu G, Jiang X, Lab Chip, 12, 3952 (2012)
Yeh P, Dai Z, Bergeron M, Zhang Z, Lin M, Cao X, Sens. Actuators B-Chem., 252, 606 (2017)
Rzhevskiy AS, Bazaz SR, Ding L, Kapitannikova A, Sayyadi N, et al., Cancers, 12, 81 (2020)
Munaz A, Shiddiky MJ, Nguyen NT, Biomicrofluidics, 12, 031501 (2018)
Munaz A, Shiddiky MJ, Nguyen NT, Sens. Actuators B-Chem., 275, 459 (2018)
Zhu T, Cheng R, Lee SA, Rajaraman E, Eiteman MA, Querec TD, Unger ER, Mao L, Microfluidic Nanofluidics, 13, 645 (2012)
Zhang J, Yan S, Yuan D, Zhao Q, Tan SH, Nguyen NT, Li W, Lab Chip, 16, 3947 (2016)
Zhao W, Cheng R, Lim SH, Miller JR, Zhang W, Tang W, Xie J, Mao L, Lab Chip, 17, 2243 (2017)
Wu J, Cui Y, Xuan S, Gong X, Microfluidic Nanofluidics, 22, 103 (2018)
Xue M, Xiang A, Guo Y, Wang L, Wang W, Ji G, Lu Z, RSC Adv., 9, 38496 (2019)
Ookawara S, Street D, Ogawa K, Chem. Eng. Sci., 61(11), 3714 (2006)
Han X, Feng Y, Cao Q, Li L, Microfluidic Nanofluidics, 18, 1209 (2015)
Warkiani ME, Tay AKP, Guan G, Han J, Sci. Rep., 5, 11018 (2015)
Martel JM, Toner M, Phys. Fluids, 24, 032001 (2012)
Kim DY, Kim JM, Korean J. Chem. Eng., 36(6), 837 (2019)
Thanormsridetchai A, Ketpun D, Srituravanich W, Piyaviriyakul P, Sailasuta A, Jeamsaksiri W, Sripumkhai W, Pimpin A, J. Mech. Sci. Technol., 31, 5397 (2017)
Ozbey A, Karimzadehkhouei M, Akgonul S, Gozuacik D, Kosar A, Sci. Rep., 6, 38809 (2016)
Shiriny A, Bayareh M, Meccanica, 55, 1903 (2020)
Vanderlinde J, Classical electromagnetic theory, Springer, Netherland (2006).
Fateen SEK, Magdy M, Chem. Eng. Res. Des., 95, 69 (2015)
Cheng R, Zhu T, Mao L, Microfluidic Nanofluidics, 16, 1143 (2014)
Zhou Y, Kumar DT, Kale A, DuBose J, Song Y, Wang J, Li D, Xuan X, Biomicrofluidics, 9, 044102 (2015)
Chen Q, Li D, Lin J, Wang M, Xuan X, Anal. Chem., 89, 6915 (2017)
Shiriny A, Bayareh M, Chem. Eng. Sci., 229, 116102 (2021)
Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DSW, Lim WT, Han J, Bhagat AAS, Lim CT, Sci. Rep., 3, 1259 (2013)
He Y, Luo L, Huang S, Int. J. Mod. Phys. B, 33, 195004 (2019)