Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 22, 2019
Accepted December 10, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
3-D modeling of proton exchange fuel cell cathode with a novel random generation of gas diffusion porous layer
A Faculty Member of Mechanical Department of Shahid Chamran University of Ahvaz, Ahvaz, Iran 1Ph.D. Student of Mechanical Department of Shahid Chamran University of Ahvaz, Ahvaz, Iran
bahoosh@scu.ac.ir
Korean Journal of Chemical Engineering, August 2021, 38(8), 1703-1714(12), 10.1007/s11814-019-0462-0
Download PDF
Abstract
A 3D model for a section of cathode fuel cell comprised of a bipolar plate, a gas diffusion layer (GDL) and a catalyst layer was simulated. The diameter of the carbon fiber GDL is assumed to be the same; moreover, a new and simple method is introduced for the reconstruction of this layer numerically. This method gives the ability to model the heterogeneous and anisotropic structure of the GDL; furthermore, it allows easy implementation and provides realistic results with consideration of the lack of overlap between carbon fibers. The lattice Boltzmann method (LBM) was employed to simulate the flow and the electrochemical reaction. The impacts of changes in the activation potential and the GDL carbon fiber diameter on oxygen species and water vapor, as well as the electric current density distribution over the catalyst layer, were studied. The results showed that at higher values o f the activation potential, the concentration of oxygen near the catalyst layer was lower. The current density over the catalyst layer also increased by increasing the activation potential; on the other hand, the mole fraction of water vapor in the cathode increased with the increase in the flow of gas products. Consequently, results indicated that the variation in the GDL carbon fiber diameter affects the distribution of reactants.
References
Barbir F, PEM fuel cells: Theory and practice, Academic press (2012).
Feroldi D, Basualdo M, Green Energy Technol., 87, 49 (2012)
Frey H, Munch W, BWK - Energie-Fachmagazin, 56, 58 (2004)
Song GH, Meng H, Acta Mech. Sin. Xuebao, 29, 318 (2013)
Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC, Appl. Energy, 88(4), 981 (2011)
Spiegel, Colleen. PEM fuel cell modeling and simulation using MATLAB. Elsevier (2011).
Didari S, Harris TAL, Huang W, Tessier SW, Wang Y, ECS Trans., 41, 499 (2011)
Gostick JI, Ioannidis MA, Fowler MW, Pritzker MD, J. Power Sources, 173(1), 277 (2007)
Pourmahmoud N, Rezazadeh S, Mirzaee I, Heidarpoor V, J. Mech. Sci. Technol., 25, 2665 (2011)
Shi Z, Wang X, J. Fuel Cell Sci. Technol., 9, 021001 (2012)
Wu R, Zhu X, Liao Q, Chen R, Cui GM, Int. J. Hydrog. Energy, 38(10), 4067 (2013)
Lee Y, J. Mech. Sci. Technol., 31, 1959 (2017)
Lee Y, J. Mech. Sci. Technol., 31, 1959 (2017)
Abdollahzadeh M, Pascoa JC, Ranjbar AA, Esmaili Q, Energy, 68, 478 (2014)
Maslan NH, Gau MM, Masdar MS, Rosli MI, J. Eng. Sci. Technol., 11, 85 (2016)
Liang MC, Liu YM, Xiao BQ, Yang SS, Wang ZK, Han HM, Int. J. Hydrog. Energy, 43(37), 17880 (2018)
Wang Y, Wang CY, Chen KS, Electrochim. Acta, 52(12), 3965 (2007)
Radhakrishnan V, Haridoss P, Mater. Des., 32, 861 (2011)
Lee KJ, Nam JH, Kim CJ, Electrochim. Acta, 54(4), 1166 (2009)
Ostadi H, Rama P, Liu Y, Chen R, Zhang XX, Jiang K, Chem. Eng. Sci., 65(6), 2213 (2010)
Becker J, Schulz V, Wiegmann A, J. Fuel Cell Sci. Technol., 5, 021006 (2008)
Vazquez L, Creus AH, Carro P, Ocon P, Herrasti P, Palacio C, Vara JM, Salvarezza RC, Arvia AJ, J. Phys. Chem., 96, 10454 (1992)
Gobel M, Godehardt M, Schladitz K, J. Power Sources, 355, 8 (2017)
Liao JD, Yang GG, Li SA, Shen QW, Jiang ZH, Wang H, Xu LY, Espinoza-Andaluz M, Pan XX, Energy Fuels, 35(3), 2654 (2021)
Kakaee AH, Molaeimanesh GR, Garmaroudi MHE, Int. J. Hydrog. Energy, 43(32), 15481 (2018)
Mu YT, Chen L, He YL, Tao WQ, Build. Environ., 92, 236 (2015)
Bahoosh R, Jafari M, Bahrainian SS, J. Heat Mass Transf. Res., 6, 105 (2019)
Chapelle I, Levesque M, Brøndsted P, Foldschack MR, Kusano Y, in ICCM Int. Conf. Compos. Mater. (2015).
Schladitz K, Peters S, Reinel-Bitzer D, Wiegmann A, Ohser J, Comput. Mater. Sci., 38, 56 (2006)
Peyrega C, Jeulin D, Delisee C, Malvestio J, Image Anal. Stereol., 28, 129 (2009)
Chen L, Luan HB, He YL, Tao WQ, Int. J. Therm. Sci., 51, 132 (2012)
Schulz VP, Becker J, Wiegmann A, Mukherjee PP, Wang CY, J. Electrochem. Soc., 154(4), B419 (2007)
Hao L, Cheng P, J. Power Sources, 186(1), 104 (2009)
Wang Y, Cho SC, Thiedmann R, Schmidt V, Lehnert W, Feng XH, Int. J. Heat Mass Transf., 53(5-6), 1128 (2010)
Feder J, J. Theor. Biol., 87, 237 (1980)
Naddeo F, Cappetti N, Naddeo A, Comput. Mater. Sci., 81, 239 (2014)
Moussaddy H, Doctoral dissertation, Montral University (2013).
Provatas N, Haataja M, Asikainen J, Majaniemi S, Alava M, Ala-Nissila T, Colloids Surf. A: Physicochem. Eng. Asp., 165, 209 (2000)
Falcucci G, Ubertini S, Galloni E, Jannelli E, in EFC 2009 -Piero Lunghi Conf. Proc. 3rd Eur. Fuel Cell Technol. Appl. Conf. (2009).
Han B, Yu J, Meng H, J. Power Sources, 202, 175 (2012)
Xiao LS, Luo M, Zhang H, Zeis R, Sui PC, J. Electrochem. Soc., 166(6), F377 (2019)
Molaeimanesh GR, Shojaeefard MH, Moqaddari MR, Korean J. Chem. Eng., 36(1), 136 (2019)
Bhatnagar PL, Gross EP, Krook M, Phys. Rev., 94, 511 (1954)
Molaeimanesh GR, Akbari MH, Korean J. Chem. Eng., 32(3), 397 (2015)
Shan X, Chen H, Phys. Rev. E, 47, 1815 (1993)
Mohamad AA, Lattice boltzmann method, 2nd Ed., Springer-Verlag, London (2011).
Succi S, Oxford Univ. Press, Oxford (2001).
Ashorynejad Hamid Reza, Javaherdeh Koroush, Van den Akker Harry E. A., Int. J. Hydrog. Energy, 41(32), 14239 (2016)
Kamali MR, Sundaresan S, Van den Akker HEA, Gillissen JJJ, Chem. Eng. J., 207-208, 587 (2012)
Vinet L, Zhedanov A, Arch. Ophthalmol., 122, 552 (2010)
Anton H, Methods Enzymol., 461, 397 (2009)
Molaeimanesh GR, Akbari MH, J. Power Sources, 258, 89 (2014)
Zou Q, He X, Phys. Fluids, 9, 1591 (1997)
Nield DA, Bejan A, Convection in porous media, Springer, New York (2013).
Kaviany M, Mech. Eng. Ser., 53, 726 (1995)
Koponen A, Kandhai D, Hellen E, Alava M, Hoekstra A, Kataja M, Niskanen K, Sloot P, Timonen J, Phys. Rev. Lett., 80, 716 (1998)
Davies CN, Proc. Inst. Mech. Eng., 167, 185 (1952)
Filippova O, Hanel D, J. Comput. Phys., 147, 219 (1998)
Koponen A, Kataja M, Timonen J, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., 56, 3319 (1997).
Feroldi D, Basualdo M, Green Energy Technol., 87, 49 (2012)
Frey H, Munch W, BWK - Energie-Fachmagazin, 56, 58 (2004)
Song GH, Meng H, Acta Mech. Sin. Xuebao, 29, 318 (2013)
Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC, Appl. Energy, 88(4), 981 (2011)
Spiegel, Colleen. PEM fuel cell modeling and simulation using MATLAB. Elsevier (2011).
Didari S, Harris TAL, Huang W, Tessier SW, Wang Y, ECS Trans., 41, 499 (2011)
Gostick JI, Ioannidis MA, Fowler MW, Pritzker MD, J. Power Sources, 173(1), 277 (2007)
Pourmahmoud N, Rezazadeh S, Mirzaee I, Heidarpoor V, J. Mech. Sci. Technol., 25, 2665 (2011)
Shi Z, Wang X, J. Fuel Cell Sci. Technol., 9, 021001 (2012)
Wu R, Zhu X, Liao Q, Chen R, Cui GM, Int. J. Hydrog. Energy, 38(10), 4067 (2013)
Lee Y, J. Mech. Sci. Technol., 31, 1959 (2017)
Lee Y, J. Mech. Sci. Technol., 31, 1959 (2017)
Abdollahzadeh M, Pascoa JC, Ranjbar AA, Esmaili Q, Energy, 68, 478 (2014)
Maslan NH, Gau MM, Masdar MS, Rosli MI, J. Eng. Sci. Technol., 11, 85 (2016)
Liang MC, Liu YM, Xiao BQ, Yang SS, Wang ZK, Han HM, Int. J. Hydrog. Energy, 43(37), 17880 (2018)
Wang Y, Wang CY, Chen KS, Electrochim. Acta, 52(12), 3965 (2007)
Radhakrishnan V, Haridoss P, Mater. Des., 32, 861 (2011)
Lee KJ, Nam JH, Kim CJ, Electrochim. Acta, 54(4), 1166 (2009)
Ostadi H, Rama P, Liu Y, Chen R, Zhang XX, Jiang K, Chem. Eng. Sci., 65(6), 2213 (2010)
Becker J, Schulz V, Wiegmann A, J. Fuel Cell Sci. Technol., 5, 021006 (2008)
Vazquez L, Creus AH, Carro P, Ocon P, Herrasti P, Palacio C, Vara JM, Salvarezza RC, Arvia AJ, J. Phys. Chem., 96, 10454 (1992)
Gobel M, Godehardt M, Schladitz K, J. Power Sources, 355, 8 (2017)
Liao JD, Yang GG, Li SA, Shen QW, Jiang ZH, Wang H, Xu LY, Espinoza-Andaluz M, Pan XX, Energy Fuels, 35(3), 2654 (2021)
Kakaee AH, Molaeimanesh GR, Garmaroudi MHE, Int. J. Hydrog. Energy, 43(32), 15481 (2018)
Mu YT, Chen L, He YL, Tao WQ, Build. Environ., 92, 236 (2015)
Bahoosh R, Jafari M, Bahrainian SS, J. Heat Mass Transf. Res., 6, 105 (2019)
Chapelle I, Levesque M, Brøndsted P, Foldschack MR, Kusano Y, in ICCM Int. Conf. Compos. Mater. (2015).
Schladitz K, Peters S, Reinel-Bitzer D, Wiegmann A, Ohser J, Comput. Mater. Sci., 38, 56 (2006)
Peyrega C, Jeulin D, Delisee C, Malvestio J, Image Anal. Stereol., 28, 129 (2009)
Chen L, Luan HB, He YL, Tao WQ, Int. J. Therm. Sci., 51, 132 (2012)
Schulz VP, Becker J, Wiegmann A, Mukherjee PP, Wang CY, J. Electrochem. Soc., 154(4), B419 (2007)
Hao L, Cheng P, J. Power Sources, 186(1), 104 (2009)
Wang Y, Cho SC, Thiedmann R, Schmidt V, Lehnert W, Feng XH, Int. J. Heat Mass Transf., 53(5-6), 1128 (2010)
Feder J, J. Theor. Biol., 87, 237 (1980)
Naddeo F, Cappetti N, Naddeo A, Comput. Mater. Sci., 81, 239 (2014)
Moussaddy H, Doctoral dissertation, Montral University (2013).
Provatas N, Haataja M, Asikainen J, Majaniemi S, Alava M, Ala-Nissila T, Colloids Surf. A: Physicochem. Eng. Asp., 165, 209 (2000)
Falcucci G, Ubertini S, Galloni E, Jannelli E, in EFC 2009 -Piero Lunghi Conf. Proc. 3rd Eur. Fuel Cell Technol. Appl. Conf. (2009).
Han B, Yu J, Meng H, J. Power Sources, 202, 175 (2012)
Xiao LS, Luo M, Zhang H, Zeis R, Sui PC, J. Electrochem. Soc., 166(6), F377 (2019)
Molaeimanesh GR, Shojaeefard MH, Moqaddari MR, Korean J. Chem. Eng., 36(1), 136 (2019)
Bhatnagar PL, Gross EP, Krook M, Phys. Rev., 94, 511 (1954)
Molaeimanesh GR, Akbari MH, Korean J. Chem. Eng., 32(3), 397 (2015)
Shan X, Chen H, Phys. Rev. E, 47, 1815 (1993)
Mohamad AA, Lattice boltzmann method, 2nd Ed., Springer-Verlag, London (2011).
Succi S, Oxford Univ. Press, Oxford (2001).
Ashorynejad Hamid Reza, Javaherdeh Koroush, Van den Akker Harry E. A., Int. J. Hydrog. Energy, 41(32), 14239 (2016)
Kamali MR, Sundaresan S, Van den Akker HEA, Gillissen JJJ, Chem. Eng. J., 207-208, 587 (2012)
Vinet L, Zhedanov A, Arch. Ophthalmol., 122, 552 (2010)
Anton H, Methods Enzymol., 461, 397 (2009)
Molaeimanesh GR, Akbari MH, J. Power Sources, 258, 89 (2014)
Zou Q, He X, Phys. Fluids, 9, 1591 (1997)
Nield DA, Bejan A, Convection in porous media, Springer, New York (2013).
Kaviany M, Mech. Eng. Ser., 53, 726 (1995)
Koponen A, Kandhai D, Hellen E, Alava M, Hoekstra A, Kataja M, Niskanen K, Sloot P, Timonen J, Phys. Rev. Lett., 80, 716 (1998)
Davies CN, Proc. Inst. Mech. Eng., 167, 185 (1952)
Filippova O, Hanel D, J. Comput. Phys., 147, 219 (1998)
Koponen A, Kataja M, Timonen J, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., 56, 3319 (1997).