Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 25, 2021
Accepted April 14, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Transparent Metal-Mesh heater using Silver-coated copper nanoparticles sintered with intense pulsed light irradiation on PET substrate
1School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea 2Semisysco, 94, Saneop-ro, Gweonseon-gu, Suwon 16643, Korea
sungmcho@skku.edu
Korean Journal of Chemical Engineering, August 2021, 38(8), 1720-1726(7), 10.1007/s11814-021-0811-7
Download PDF
Abstract
A transparent metal-mesh heater was fabricated by intense pulsed light (IPL) sintering of copper-based particle ink on a polyethylene terephthalate (PET) substrate having a low glass transition temperature. The metal-mesh electrode with a line width of 9 μm was formed by filling imprinted intaglio patterns with silver-coated copper particle ink. This silver-coated copper particle is based on inexpensive copper and has excellent oxidation resistance as pure silver particle at temperatures up to 150 °C, making it suitable as a metal particle for metal-mesh heaters. This metal ink was IPL-sintered for the short time of 20ms to obtain a transparent electrode with a low sheet resistance of 2Ω/sq. without deterioration of the PET substrate. The silver thin film coated on the surface of the copper particles not only effectively blocks the reduction heat that may occur during the IPL sintering process, but also plays an important role in preventing the oxidation of copper during the operation of the transparent heater. It was confirmed that this flexible heater with 85% transparency is capable of stable operation up to 130 °C at a low voltage of 9 V.
References
Watanabe K, Iwaki Y, Uchida Y, Nakamura D, Ikeda H, Katayama M, Cho T, Miyake H, Hirakata Y, Yamazaki S, J. Soc. Inf. Display, 24, 12 (2016)
Park KT, Kim HJ, Park MJ, Jeong JH, Lee J, Choi DG, Lee JH, Choi JH, Sci. Rep., 5, 12093 (2015)
Kumar A, Zhou C, ACS Nano, 4, 11 (2010)
Hecht DS, Hu L, Irvin G, Adv. Mater., 223, 1482 (2011)
Pang SP, Hernandez Y, Feng XL, Mullen K, Adv. Mater., 23(25), 2779 (2011)
Jang J, Mater. Today, 9, 46 (2006)
Lee JY, Connor ST, Cui Y, Peumans P, Nano Lett., 8, 689 (2008)
Kim JW, Lee SW, Lee Y, Jung SB, Hong SJ, Kwak MG, J. Nanosci. Nanotechnol., 13, 6244 (2013)
Lipomi DJ, Lee JA, Vosgueritchian M, Tee BCK, Bolander JA, Bao Z, Chem. Mater., 24, 373 (2012)
Cho N, Jung Y, Chung KB, Kang S, Curr. Nanosci., 9, 521 (2013)
Shin K, Park RK, Yu L, Park CY, Lee YS, Lim YS, Han JH, Synth. Met., 161, 1596 (2011)
Han S, Chae Y, Kim JY, Jo Y, Lee SS, Kim SH, Woo KH, Jeong SH, Choi YM, Lee SY, J. Mater. Chem. C, 6, 4389 (2018)
Jang HY, Lee SK, Cho SH, Ahn JH, Park S, Chem. Mater., 25, 3535 (2013)
Kim BJ, Park JS, Hwang YJ, Park JS, Thin Solid Films, 596, 68 (2015)
Nam H, Seo D, Yun H, Thangavel G, Park L, Nam S, Metals, 7, 176 (2017)
Horiuchi Y, Suzuki Y, Noh JH, Honma H, Takai O, Cordonier CEJ, Electrochemistry, 84, 971 (2016)
Zhang X, Pan Y, Zhao J, Hao X, Wang Y, Schubert DW, Liu L, Shen C, Liu X, Engineered Science, 7, 65 (2019)
Zhou W, Chen J, Li Y, Wang D, Chen J, Feng X, Huang Z, Liu R, Lin X, Zhang H, Mi B, Ma Y, ACS Appl. Mater. Interfaces, 8, 11122 (2016)
Hutter OS, Stec HM, Hatton RA, Adv. Mater., 25(2), 284 (2012)
Kim DJ, Kim HJ, Seo KW, Kim KH, Kim TW, Kim HK, Sci. Rep., 5, 1 (2015)
Dharmadasa R, Jha M, Amos DA, Druffel T, ACS Appl. Mater. Interfaces, 5, 13227 (2013)
Xu P, Hamilton MC, IEEE Microw. Wirel. Compon. Lett., 23(4), 178 (2013)
Han Y, Zhong H, Liu N, Liu Y, Lin J, Jin P, Adv. Electron. Mater., 4, 180015 (2018)
Jang S, Seo Choi J, Kim T, Cho J, Kim S, Kim D, Scr. Mater., 62, 258 (2010)
Wang BY, Yoo TH, Song YW, Lim DS, Oh YJ, ACS Appl. Mater. Interfaces, 5, 4113 (2013)
Rager MS, Aytug T, Veith GM, Joshi P, ACS Appl. Mater. Interfaces, 8, 2441 (2016)
Hwang HJ, Chung WH, Kim HS, Nanotechnology, 23, 485205 (2012)
Joo M, Lee B, Jeong S, Lee M, Thin Solid Films, 520(7), 2878 (2012)
Ryu J, Kim HS, Hahn HT, J. Electron. Mater., 40, 42 (2010)
Chung WH, Hwang YT, Lee SH, Kim HS, Nanotechnology, 27, 205704 (2016)
Hwang HJ, Oh KH, Kim HS, Sci. Rep., 6, 1 (2016)
Park J, Han D, Choi S, Kim Y, Kwak J, RSC Adv., 9, 5731 (2019)
Veeramuthu L, Chen BY, Tsai CY, Liang FC, Venkatesan M, Jiang DH, Chen CW, Cai X, Kuo CC, RSC Adv., 9, 35786 (2019)
Perelaer J, de Gans BJ, Schubert US, Adv. Mater., 18(16), 2101 (2006)
Chen X, Wu X, Shao S, Zhuang J, Xie L, Nie S, Su W, Chen Z, Cui Z, Sci. Rep., 7, 1 (2017)
Li W, Hu D, Li L, Li CF, Jiu J, Chen C, Ishina T, Sugahara T, Suganuma K, ACS Appl. Mater. Interfaces, 9, 24711 (2017)
Wu X, Shao S, Chen Z, Cui Z, Nanotechnology, 28, 035203 (2016)
Macneill W, Choi CH, Chang CH, Malhotra R, Sci. Rep., 5, 1 (2015)
Park KT, Kim HJ, Park MJ, Jeong JH, Lee J, Choi DG, Lee JH, Choi JH, Sci. Rep., 5, 12093 (2015)
Kumar A, Zhou C, ACS Nano, 4, 11 (2010)
Hecht DS, Hu L, Irvin G, Adv. Mater., 223, 1482 (2011)
Pang SP, Hernandez Y, Feng XL, Mullen K, Adv. Mater., 23(25), 2779 (2011)
Jang J, Mater. Today, 9, 46 (2006)
Lee JY, Connor ST, Cui Y, Peumans P, Nano Lett., 8, 689 (2008)
Kim JW, Lee SW, Lee Y, Jung SB, Hong SJ, Kwak MG, J. Nanosci. Nanotechnol., 13, 6244 (2013)
Lipomi DJ, Lee JA, Vosgueritchian M, Tee BCK, Bolander JA, Bao Z, Chem. Mater., 24, 373 (2012)
Cho N, Jung Y, Chung KB, Kang S, Curr. Nanosci., 9, 521 (2013)
Shin K, Park RK, Yu L, Park CY, Lee YS, Lim YS, Han JH, Synth. Met., 161, 1596 (2011)
Han S, Chae Y, Kim JY, Jo Y, Lee SS, Kim SH, Woo KH, Jeong SH, Choi YM, Lee SY, J. Mater. Chem. C, 6, 4389 (2018)
Jang HY, Lee SK, Cho SH, Ahn JH, Park S, Chem. Mater., 25, 3535 (2013)
Kim BJ, Park JS, Hwang YJ, Park JS, Thin Solid Films, 596, 68 (2015)
Nam H, Seo D, Yun H, Thangavel G, Park L, Nam S, Metals, 7, 176 (2017)
Horiuchi Y, Suzuki Y, Noh JH, Honma H, Takai O, Cordonier CEJ, Electrochemistry, 84, 971 (2016)
Zhang X, Pan Y, Zhao J, Hao X, Wang Y, Schubert DW, Liu L, Shen C, Liu X, Engineered Science, 7, 65 (2019)
Zhou W, Chen J, Li Y, Wang D, Chen J, Feng X, Huang Z, Liu R, Lin X, Zhang H, Mi B, Ma Y, ACS Appl. Mater. Interfaces, 8, 11122 (2016)
Hutter OS, Stec HM, Hatton RA, Adv. Mater., 25(2), 284 (2012)
Kim DJ, Kim HJ, Seo KW, Kim KH, Kim TW, Kim HK, Sci. Rep., 5, 1 (2015)
Dharmadasa R, Jha M, Amos DA, Druffel T, ACS Appl. Mater. Interfaces, 5, 13227 (2013)
Xu P, Hamilton MC, IEEE Microw. Wirel. Compon. Lett., 23(4), 178 (2013)
Han Y, Zhong H, Liu N, Liu Y, Lin J, Jin P, Adv. Electron. Mater., 4, 180015 (2018)
Jang S, Seo Choi J, Kim T, Cho J, Kim S, Kim D, Scr. Mater., 62, 258 (2010)
Wang BY, Yoo TH, Song YW, Lim DS, Oh YJ, ACS Appl. Mater. Interfaces, 5, 4113 (2013)
Rager MS, Aytug T, Veith GM, Joshi P, ACS Appl. Mater. Interfaces, 8, 2441 (2016)
Hwang HJ, Chung WH, Kim HS, Nanotechnology, 23, 485205 (2012)
Joo M, Lee B, Jeong S, Lee M, Thin Solid Films, 520(7), 2878 (2012)
Ryu J, Kim HS, Hahn HT, J. Electron. Mater., 40, 42 (2010)
Chung WH, Hwang YT, Lee SH, Kim HS, Nanotechnology, 27, 205704 (2016)
Hwang HJ, Oh KH, Kim HS, Sci. Rep., 6, 1 (2016)
Park J, Han D, Choi S, Kim Y, Kwak J, RSC Adv., 9, 5731 (2019)
Veeramuthu L, Chen BY, Tsai CY, Liang FC, Venkatesan M, Jiang DH, Chen CW, Cai X, Kuo CC, RSC Adv., 9, 35786 (2019)
Perelaer J, de Gans BJ, Schubert US, Adv. Mater., 18(16), 2101 (2006)
Chen X, Wu X, Shao S, Zhuang J, Xie L, Nie S, Su W, Chen Z, Cui Z, Sci. Rep., 7, 1 (2017)
Li W, Hu D, Li L, Li CF, Jiu J, Chen C, Ishina T, Sugahara T, Suganuma K, ACS Appl. Mater. Interfaces, 9, 24711 (2017)
Wu X, Shao S, Chen Z, Cui Z, Nanotechnology, 28, 035203 (2016)
Macneill W, Choi CH, Chang CH, Malhotra R, Sci. Rep., 5, 1 (2015)