ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 17, 2021
Accepted April 26, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effects of the content 4,4'-diaminodiphenyl methane on thermomechanical properties of shape-memory epoxy polymers

State Key Laboratory of Petroleum Resources and Prospecting, MOE Key Laboratory of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
m15600263100_1@163.com
Korean Journal of Chemical Engineering, August 2021, 38(8), 1733-1745(13), 10.1007/s11814-021-0824-2
downloadDownload PDF

Abstract

A series of thermosetting shape memory epoxy polymers (SMEPs) were prepared using the epoxy resin diglycidyl ether bisphenol A E-51 with varying content of curing agent 4,4'-diaminodiphenyl methane (DDM). The chemical, thermal and mechanical properties of the SMEPs were systematically investigated via Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic and static mechanical analysis, and thermogravimetric analysis. The results indicate that the shape-memory temperature (Tg) of the SMEPs varies within the range of 33.9 °C to 140.0 °C with DDM content increasing from 12% to 25%, and the Tg values exhibit a good linear correlation, with a correlation coefficient of more than 0.999. This indicates that SMEPs with tunable shape-memory temperatures can be realized by controlling the content of the curing agent. When the DDM content is 17-19%, the shape fixity and shape recovery ratio of the SMEPs reaches approximately 100%. In addition, the shape recovery time decreases as temperature increases. This work also highlights the effect of DDM curing agent content on the thermal, mechanical and shape-memory properties of SMEPs, and it is in favor of extending their further applications.

References

Lendlein A, Shape-memory polymers, Springer, Berlin/Heidelberg, Germany (2010).
Hu J, Shape memory polymers with novel functions: Electro-active, magnetically-active, light-adaptive and phase change materials, UK (2013).
Tandon G, Baur J, McClung A, Shape memory polymers for aerospace applications: Novel synthesis, modeling, characterization and design, Pennsylvania (2015).
Leng JS, Lan X, Liu YJ, Du SY, Prog. Mater. Sci., 56(7), 1077 (2011)
Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C, Mater. Des., 33, 577 (2012)
Liu C, Qin H, Mather P, J. Mater. Chem., 17(16), 1543 (2007)
Beloshenko V, Beygelzimer YE, Borzenko A, Varyukhin V, Compos. Part A, 33, 1001 (2002)
Du W, Jin Y, Lai S, Shi L, Shen Y, Yang H, Compos. Part A, 128, 105686 (2020)
Nissenbaum A, Greenfeld I, Wagner HD, Polymer, 190, 122226 (2020)
Yang D, Huang W, Yu JH, Jiang JS, Zhang LY, Xie MR, Polymer, 51(22), 5100 (2010)
Li G, Self-healing composites: shape memory polymer based structures, John Wiley & Sons, West Sussex (2014).
Ma L, Zhao J, Wang XY, Chen M, Liang YR, Wang ZW, Yu ZN, Hedden RC, Polymer, 56, 490 (2015)
Kolesov IS, Kratz K, Lendlein A, Radusch HJ, Polymer, 50(23), 5490 (2009)
Ikematsu T, Kishimoto Y, Karaushi M, Japan Patent, 02,022,355 (1990).
Jeong HM, Ahn BK, Kim BK, Eur. Polym. J., 37(11), 2245 (2001)
Jeong HM, Song JH, Lee SY, Kim BK, J. Mater. Sci., 36(22), 5457 (2001)
Korley LTJ, Pate BD, Thomas EL, Hammond PT, Polymer, 47(9), 3073 (2006)
Zhu Y, Hu JL, Choi KF, Meng QH, Chen SJ, Yeung KW, Polym. Adv. Technol., 19, 328 (2008)
Zhang H, Wang HT, Zhong W, Du QG, Polymer, 50(6), 1596 (2009)
Ratna D, Karger-Kocsis J, J. Mater. Sci., 43(1), 254 (2008)
Merline JD, Nair CPR, Ninan KN, J. Macromol. Sci., Part A: Pure Appl. Chem., 45(4), 312 (2008)
Kumar KS, Biju R, Nair CR, React. Funct. Polym., 73(2), 421 (2013)
Liu Y, Du H, Liu L, Leng J, Smart Mater. Struct., 23(2), 023001 (2014)
Dong Y, Gong M, Huang D, Gao J, Zhou Q, Prog. Org. Coat., 136, 105232 (2019)
Margoy D, Gouzman I, Grossman E, Bolker A, Eliaz N, Verker R, Acta Astronaut., 178, 908 (2021)
Sun S, Sun G, Wu J, Smart Mater. Struct., 11(6), 970 (2002)
Shimamoto A, Zhao H, Azakami T, Smart Mater. Struct., 16(3), N13 (2007)
Kirkby EL, Michaud VJ, Manson JAE, Sottos NR, White SR, Polymer, 50(23), 5533 (2009)
Saeedi A, Shokrieh MM, J. Intell. Mater. Syst. Struct., 30(10), 1585 (2019)
Wang ZQ, Xu LD, Sun XY, Shi MF, Liu JB, Compos. Struct., 178, 311 (2017)
D'Elia E, Ahmed HS, Feilden E, Saiz E, Appl. Mater. Today, 15, 185 (2019)
Yazik MHM, Sultan MTH, Mazlan N, Talib ARA, Naveen J, Shah AUM, Safri SNA, J. Mater. Res. Technol., 9(3), 6085 (2020)
Yao Y, Luo Y, Xu Y, Wang B, Li J, Deng H, Lu H, Compos. Part B, 152, 1 (2018)
Fabrizio Q, Loredana S, Anna SE, Mater. Lett., 69, 20 (2012)
Liu T, Liu L, Yu M, Li Q, Zeng C, Lan X, Liu Y, Leng J, Compos. Struct., 206, 164 (2018)
Liu YY, Han CM, Tan HF, Du XW, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 527, 2510 (2010)
Song WB, Wang LY, Wang ZD, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 529, 29 (2011)
Xie T, Rousseau IA, Polymer, 50(8), 1852 (2009)
Hagen R, Salmen L, Stenberg B, J. Polym. Sci. B: Polym. Phys., 34(12), 1997 (1996)
Saville B, Watson AA, Rubber Chem. Technol., 40(1), 100 (1967)
Karger-Kocsis J, Keki S, Polymer, 10, 34 (2018)
Nelson BA, King WP, Gall K, Appl. Phys. Lett., 86(10), 103108 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로