ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 4, 2021
Accepted April 11, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of glycidyl methacrylate-grafted poly(ethylene octene) on the compatibility in PLA/PBAT blends and films

1School of chemical engineering, Changchun University of Technology, Changchun 130012, China 2Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Changchun 130022, China 3Jilin COFCO Biomaterial Co., Ltd., Changchun 130022, China 4Zhejiang Zhongke Applied Chemistry Technology Co., Ltd., Hangzhou 310000, China
wanglj15@ccut.edu.cn
Korean Journal of Chemical Engineering, August 2021, 38(8), 1746-1755(10), 10.1007/s11814-021-0809-1
downloadDownload PDF

Abstract

A series of poly(lactic acid) (PLA), poly(butylene adipate-co-terephthalate) (PBAT) and glycidyl methacrylate- grafted poly(ethylene octene) (GPOE) blends and films with different GPOE content were prepared by melt blending and blowing film technique. The effect of GPOE on the rheological behavior, melt strength, crystallization behavior, crystallization morphology, miscibility, mechanical property, phase morphology, thermal stability and water vapor permeability were studied. The addition of GPOE improved melt rheological properties. Results of DSC showed that addition of GPOE encouraged the mobility of PLA molecular chains and enhanced crystalline ability. POM observations revealed that the addition of GPOE made the density of spherulite nucleation increase and the size of crystalline particles decrease. From DMA and SEM analysis, it was demonstrated that PLA/PBAT blend was an immiscible system and GPOE in the blend could improve compatibility between PLA and PBAT. Results of mechanical test showed that the PLA/PBAT/GPOE blends and films obtained had excellent mechanical properties. The elongation at break of 50/30/ 20 w/w/w PLA/PBAT/GPOE blend (477%) was higher by about 2.2 times than that of 70/30/0 w/w/w PLA/PBAT/ GPOE blend (220%). The tensile strength of all the PLA/PBAT/GPOE blends exceeded 31 MPa. The tensile strength reached 32.9MPa (MD) and 22.5MPa (TD), the elongation at break exceeded 210% and tear strength exceeded 140 kN/m for 50/30/20 w/w/w PLA/PBAT/GPOE film. With increasing GPOE content, thermal stability and water vapor barrier property also improved.

References

Palai B, Mohanty S, Nayak SK, Polym. Test, 83, 106130 (2020)
Nofar M, Salehiyan R, Ciftci U, Jalali A, Durmus A, Compos. Part B-Eng., 182, 107661 (2020)
Zhou Y, Wang J, Cai SY, Wang ZG, Zhang NW, Ren J, Polym. Bull., 75, 5437 (2018)
Costa RGF, Brichi GS, Ribeiro C, Mattoso LHC, Polym. Bull., 73(11), 2973 (2016)
Agrawal P, Araujo APM, Lima JCC, Cavalcanti SN, et al., J. Polym. Environ., 27, 1439 (2019)
Pilla S, Kim SG, Auer GK, Gong SQ, Park CB, Polym. Eng. Sci., 49(8), 1653 (2009)
Xu LQ, Huang HX, Ind. Eng. Chem. Res., 53(6), 2277 (2014)
Wang S, Pang S, Pan L, Xu N, Li T, Polymers, 8, 417 (2016)
Phattarateera S, Pattamaprom C, J. Polym. Environ., 28, 1592 (2020)
Wang Z, Zhang M, Liu Z, Zhang S, Cao Z, Yang W, Yang M, J. Appl. Polym. Sci., 135, 46009 (2018)
Li JZ, Schultz JM, Chan CM, Polymer, 63, 179 (2015)
Eom Y, Choi B, Park SI, J. Polym. Environ., 27, 256 (2018)
Fang H, Jiang F, Wu Q, Ding Y, Wang Z, ACS Appl. Mater. Inter., 6, 13552 (2014)
Li RY, Wu LB, Li BG, Ind. Eng. Chem. Res., 56(10), 2773 (2017)
Rigolin TR, Costa LC, Chinelatto MA, Munoz PAR, Bettini SHP, Polym. Test, 63, 542 (2017)
Al-Itry R, Lamnawar K, Maazouz A, Polym. Degrad. Stabil., 97, 1898 (2012)
Jin FL, Hu RR, Park SJ, Korean J. Chem. Eng., 27, 905 (2020)
Chuaponpat N, Ueda T, Ishigami A, Kurose T, Ito H, Polymers, 12, 1083 (2020)
Zhang M, Thomas NL, Adv. Polym. Technol., 30(2), 67 (2011)
Takayama T, Todo M, J. Mater. Sci., 41(15), 4989 (2006)
Ma XF, Yu JG, Wang N, J. Polym. Sci. B: Polym. Phys., 44(1), 94 (2006)
Song WJ, Liu HZ, Chen F, Zhang JW, Polymer, 53(12), 2476 (2012)
Lee CM, Kim ES, Yoon JS, J. Appl. Polym. Sci., 98(2), 886 (2005)
Nofar M, Mohammadi M, Carreau PJ, J. Appl. Polym. Sci., 137, e49387 (2020)
Deng Y, Yu C, Wongwiwattana P, Thomas NL, J. Polym. Environ., 26, 3802 (2018)
Jiang L, Wolcott MP, Zhang JW, Biomacromolecules, 7(1), 199 (2006)
Ting G, Zhu D, Lu Y, Lu S, Polym. Sci. Ser. A, 61, 317 (2019)
Zhang N, Zeng C, Wang L, Ren J, J. Polym. Environ., 21, 286 (2012)
He H, Wang G, Chen M, Xiong C, Li Y, Tong Y, Materials, 13, 2094 (2020)
Wang X, Peng S, Chen H, Yu X, Zhao X, Compos. Part B-Eng., 173, 107028 (2019)
Lim LT, Auras R, Rubino M, Prog. Polym. Sci, 33, 820 (2008)
Andrzejewski J, Cheng J, Anstey A, Mohanty AK, Misra M, ACS Sustain. Chem. Eng., 8, 6576 (2020)
Ding Y, Lu B, Wang P, Wang G, Ji J, Polym. Degrad. Stabil., 147, 41 (2018)
Sun Z, Zhang B, Bian X, Feng L, Zhang H, Duan R, Sun J, Pang X, Chen W, Chen X, RSC Adv., 5, 73842 (2015)
Li X, Ai XX, Pan H, Yang J, Gao G, Zhang H, Yang H, Dong L, Polym. Adv. Technol., 29, 1706 (2018)
Su Z, Li Q, Liu Y, Hu GH, Wu C, Eur. Polym. J., 45, 2428 (2009)
Arruda LC, Magaton M, Bretas RES, Ueki MM, Polym. Test, 43, 27 (2015)
Wang X, Mi J, Wang J, Zhou H, Wang X, RSC Adv., 8, 34418 (2018)
Aliotta L, Gigante V, Acucella O, Signori F, Lazzeri A, Front. Mater., 7, 130 (2020)
Pal AK, Katiyar V, Biomacromolecules, 17(8), 2603 (2016)
Bai J, Wang J, Wang W, Fang H, Xu Z, Chen X, Wang Z, ACS Sustain. Chem. Eng., 4, 273 (2015)
Qi F, Tang M, Chen X, Chen M, Guo G, Zhang Z, Eur. Polym. J., 71, 314 (2015)
Wang HL, Yu JT, Fang HG, Wei HB, Wang XH, Ding YS, Polymer, 137, 1 (2018)
Zhang H, Wang S, Zhang S, Ma R, Wang Y, Cao W, Liu C, Shen C, Polym. Test, 64, 12 (2017)
Lin WY, Qu JP, Ind. Eng. Chem. Res., 58(25), 10894 (2019)
Hou AL, Qu JP, Polymers, 11, 771 (2019)
Zhao Y, Lang XZ, Pan HW, Wang YJ, Yang HL, Zhang HL, Zhang HX, Dong LS, Polym. Eng. Sci., 55(12), 2801 (2015)
Yu X, Wang X, Zhang Z, Peng S, Chen H, Zhao X, Polym. Test, 78, 105980 (2019)
Wang B, Jin Y, Kang KE, Yang N, Weng Y, Huang Z, Men S, E-Polymers
Wu D, Guo Y, Huang A, Xu R, Liu P, Polym. Bull. (2020).
Kilic NT, Can BN, Kodal M, Ozkoc G, Appl. Polym. Sci., 136, 47217 (2019)
Ilsouk M, Raihane M, Rhouta B, Meri RM, Zicans J, Vecstaudza J, Lahcini M, RSC Adv., 10, 37314 (2020)
Follain N, Cretois R, Lebrun L, Marais S, Phys. Chem. Chem. Phys., 18, 20345 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로