ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 30, 2020
Accepted April 4, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Solid-state reaction between MoS2 and MoO3 in a fluidized bed reactor

Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea 1Department of Chemical Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea
Korean Journal of Chemical Engineering, September 2021, 38(9), 1791-1796(6), 10.1007/s11814-021-0797-1
downloadDownload PDF

Abstract

MoO2 was produced by mixing MoS2 and MoO3 via a solid-state reaction in a fluidized bed reactor. The basic fluidization data were acquired by monitoring the minimum fluidization velocity of MoS2 and MoO3. The conversion rate of MoS2 and MoO3 to MoO2 was derived based on the solid-state reactions carried out for 1 h at various stoichiometric ratios. This study confirmed that the optimal stoichiometric ratio of MoS2 and MoO3 was 1.0 : 6. The conversion rate at the optimum stoichiometric ratio was studied by varying the reaction temperature. A conversion rate of 99% was achieved when the reaction temperature and superficial gas velocity were 973 K and 0.3m/s, respectively. Detailed analysis of the final product after the solid-state reaction was by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD), to determine the shape, structure, and diffraction patterns.

References

Lee JR, Lee KS, Park YO, Lee KY, Chem. Eng. J., 380, 122454 (2020)
Lee JR, Hasolli N, Lee KS, Lee KY, Park YO, Korean J. Chem. Eng., 36(9), 1548 (2019)
Lee JR, Lee KS, Hasolli N, Park YO, Lee KY, Kim YH, Chem. Eng. Process., 149, 107856 (2020)
Podczeck F, Powder Technol., 93(1), 47 (1997)
Cho M, ISIJ International, 42, 33 (2002)
Lee JR, Kim YH, Chem. Eng. Res. Des., 168, 193 (2021)
Zhang XL, Han YX, Sun YS, Li YJ, Powder Technol., 352, 16 (2019)
Jin Y, Lu HF, Guo XL, Gong X, Powder Technol., 376, 468 (2020)
Ge W, Chang Q, Li C, Wang J, Chem. Eng. Sci., 198, 198 (2019)
Zhang GH, Li JJ, Wang L, Chou KC, Int. J. Refract. Met. Hard Mater., 69, 180 (2017)
Zhang BQ, Kobayashi N, Itaya Y, Powder Technol., 343, 309 (2019)
Kim GS, Lee YJ, Kim DG, Kim YD, J. Alloy. Compd., 454
Kim GS, Kim HG, Kim DG, Oh ST, Suk MJ, Kim YD, J. Alloy. Compd., 469, 401 (2009)
Raymond C, U.S. Patent, 3,336,100 (1967).
Manukyan K, Davtyan D, Bossert J, Kharatyan S, Chem. Eng. J., 168(2), 925 (2011)
Kim BS, Kim EY, Jeon HS, Lee HI, Lee JC, Mater. Trans., 49, 2147 (2008)
Lessard JD, Shekhter LN, Gribbin DG, McHugh LF, JOM, 65, 1566 (2013)
Wang L, Bu CY, Zhang GH, Jiang T, Chou KC, JOM, 68, 1031 (2016)
Bizhaem HK, Tabrizi HB, Powder Technol., 237, 14 (2013)
Barletta D, Poletto M, Powder Technol., 225, 93 (2013)
Lee JR, Hasolli N, Jeon SM, Lee KS, Kim KD, Kim YH, Lee KY, Park YO, Korean J. Chem. Eng., 35(11), 2321 (2018)
Mostoufi N, Chem. Eng. Sci., 229, 116029 (2021)
Geldart D, Powder Technol., 7, 285 (1973)
Wei L, Lu Y, Zhu J, Jiang G, Hu J, Teng H, Korean J. Chem. Eng., 35(10), 2117 (2018)
Lin HY, Chen YW, Li CP, Thermochim. Acta, 400(1-2), 61 (2003)
Ishida M, Wen CY, AIChE J., 14, 311 (1968)
Marnani AK, Buck A, Antonyuk S, van Wachem B, Thevenin D, Tomas J, Processes, 7, 439 (2019)
Zhou Y, Ding H, Zhu J, Shao Y, Chem. Eng. J., 394, 125039 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로