ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 9, 2020
Accepted May 12, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Preparation of N-TiO2/RGO nanocomposites through sol-gel method

College of Chemical Engineering, China University of Petroleum Huadong, Qingdao 266580, Shandong Prov., China
liuhuie@upc.edu.cn
Korean Journal of Chemical Engineering, September 2021, 38(9), 1913-1922(10), 10.1007/s11814-021-0843-z
downloadDownload PDF

Abstract

Nitrogen-doped TiO2 and reduced graphene oxide (RGO) nanocomposites (NTG) were prepared by solgel method followed by annealing treatment process under N2 atmosphere. The as-prepared NTG nanocomposite were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The results indicate that the incorporation of nitrogen onto both RGO and TiO2 was accomplished simultaneously in the facile process. Nitrogen doping makes the light excitation range red shift and can enhance the electron-hole separation effectively. The photocatalytic activity of the as-prepared samples was evaluated through the degradation of methyl orange (MO) under visible light irradiation. The introduction of nitrogen increased the photodegradation activity, which can be indicated by the fitted apparent first-order kinetics rate constant k, increasing about four times from 0-NTG-450 to 15-NTG-450. The annealing treatment further increased the photodegradation activity about 1.5 times of 15NTG-450 for 15NTG-800.

References

Jiang B, Tian C, Pan Q, Jiang Z, Wang J, Yan W, Fu H, J. Phys. Chem., 115, 23718 (2011)
Gao W, Wang M, Ran C, Yao X, Yang H, Liu J, He D, Bai J, Nanoscale, 6, 5498
Kumar SG, Rao KSRK, Appl. Surf. Sci., 391, 124 (2017)
Liu G, Zhao YN, Sun CH, Li F, Lu GQ, Cheng HM, Angew. Chem.-Int. Edit., 47, 4516 (2008)
Shah MSASR, Park AR, Zhang K, Park JH, Yoo PJ, ACS Appl. Mater. Interfaces, 4, 3893 (2012)
Wen YY, Ding HM, Shan YK, Nanoscale, 3, 4411 (2011)
Chen XB, Shen SH, Guo LJ, Mao SS, Chem. Rev., 110(11), 6503 (2010)
Zhao YX, Qiu XF, Burda C, Chem. Mater., 20, 2629 (2008)
Ohno T, Mitsui T, Matsumura M, Chem. Lett., 32(4), 364 (2003)
Choi Y, Umebayashi T, Yoshikawa M, J. Mater. Sci., 39, 1387 (2004)
Li HX, Bian ZF, Zhu J, Huo YN, Li H, Lu YF, JACS, 129, 4538 (2007)
Kadia MW, Mohamed RM, Ceram. Int., 45, 6045 (2019)
Zhou X, Jin B, Li L, Peng F, Wang H, Yu H, Fang Y, J. Mater. Chem., 22, 17900 (2012)
Chen W, Fan ZL, Zhang B, Ma GJ, Takanabe K, Zhang XX, Lai ZP, J. Am. Chem. Soc., 133(38), 14896 (2011)
Wang WS, Wang Dh, Qu WG, Lu LQ, Xu AW, J. Phys. Chem. C, 116, 19893 (2012)
Zhao FH, Dong BH, Gao RJ, Su G, Liu W, Shi L, Xia CH, Cao LX, Appl. Surf. Sci., 351, 303 (2015)
Su DS, Perathoner S, Centi G, Chem. Rev., 113(8), 5782 (2013)
Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin JY, Rouff RS, Energy Environ. Sci., 5, 7936 (2012)
Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
Jiang Z, Yang F, Luo NJ, Chu TYB, Sun D, Shi HH, Xiao TC, Peter PE, Chem. Commun., 47, 6372 (2008)
Sang W, Zhan C, Hao S, Mei L, Cui J, Zhang Q, Jin X, Li C, J. Wat. Pro. Eng., 41, 101997 (2021)
Wen L, Huang T, Huang M, Lu Z, Chen Q, Meng Y, Zhou L, Ceram. Int., 46, 9930 (2020)
Santhosh K, Saddam SK, Chouti S, Gonuguntla S, Ega SP, Tiwari A, Pal U, J. Mol. Struct., 1235, 130222 (2021)
Cheng P, Yang Z, Wang H, Cheng W, Chen MX, Shangguan WF, Ding GF, Int. J. Hydrog. Energy, 37(3), 2224 (2012)
Hu Y, Wang M, Hu F, Wu J, Xu L, Xu G, Jian Y, Peng X, Colloids Surf. A: Physicochem. Eng. Asp., 598, 124831 (2020)
Geim AK, Science, 324, 1530 (2009)
Fan H, Yi G, Zhang X, Xing B, Zhang C, Chen L, Zhang Y, Optical Mater., 111, 110582 (2021)
Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F, ACS Nano, 5, 590 (2011)
Chen C, Cai WM, Long M, Zhou BX, Wu YH, Wu DY, ACS Nano, 4, 6425 (2010)
Bao HV, Dat NM, Giang NTH, Thinh DB, Tai LT, et al., Surf. Interfaces, 23, 100950 (2021)
Zaleska A, Recent. Patents Eng., 2, 157 (2008)
Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, J. Phys. Chem. B., 108, 19912 (2004)
Mohammadi M, Roknabadi MR, Behdania M, Kompany A, Ceram. Int., 45, 12625 (2019)
Pei FY, Liu GL, Xu SG, Lu J, Wang CX, Cao SK, Int. J. Hydrog. Energy, 38(6), 2670 (2013)
Ida S, Wilson P, Neppolian B, Sathish M, Karthik P, Ravi P, Ultrason. Sonochem., 57, 62 (2019)
Brinker CJ, Scherrer GW, J. Non-Cryst. Solids, 70, 301 (1985)
Lai LF, Potts JR, Zhan D, Wang L, KokPoh C, Gong H, Shen ZX, Linc J, Ruoff RS, Energy Environ. Sci., 5, 7936 (2012)
Liao YL, Gao Y, Zhu SM, Zheng JS, Chen ZX, Yin C, Lou XH, Zhang D, ACS Appl. Mater. Interfaces, 7, 35 (2015)
Stankovich S, Dikin D, Piner RD, Kohlhaas K, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon N. Y, 45, 1558 (2007)
Wang G, Wang B, Park J, Yang J, Shen X, Yao J, Carbon N. Y., 47, 68 (2009)
Yin X, Zhang H, Xu P, Han J, Li J, He M, RSC Adv., 3, 18474 (2013)
Xu D, Wang P, Shen B, Digest J. Nanomat. Biostruct., 11, 15 (2016)
Hao YN, Guo HL, Tian L, Kang XF, RSC Adv., 5, 43750 (2015)
Edwin N, Saranya S, Wilson P, Ceram. Int., 45, 5475 (2019)
Chen LC, Ho YC, Guo WS, Huang CM, Pan TC, Electrochim. Acta, 54(15), 3884 (2009)
Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S, Carbon, 47, 3280 (2009)
Xu HT, Quan X, Chen S, Zhao HM, Zhang YB, J. Photochem. Photobiol. A-Chem., 200, 301 (2008)
Akhavan O, Azimirad R, Safa S, Larijani MM, J. Mater. Chem., 20, 7386 (2010)
Carreno-Lizcano MI, Gualdron-Reyes AF, Rodriguez-Gonzalez V, Pedraza-Avella JA, Nino-Gomez ME, Cat. Today, 341, 96 (2020)
Zhang H, Lv XJ, Li YM, Wang Y, Li JH, ACS Nano, 4, 380 (2010)
Wang C, Zhou P, Wang Z, Liu Y, Wang P, Qin X, Zhang X, Dai Y, Whangbo MH, Huang B, RSC Adv., 8, 12841 (2018)
Jin Y, Li C, Zhang Y, New Carbon Mater., 35, 394 (2020)
Song T, Zhang L, Zhang PY, Zeng J, Wang TT, Ali A, Zeng HP, J. Mater. Chem. A., 5, 6013 (2017)
Xu LQ, Wang L, Zhang B, Lim CH, Chen Y, Neoh KG, Kang ET, Fu GD, Polymer, 52(11), 2376 (2011)
Yen HS, Yang KW, Tu SL, Chang SJ, Appl. Phys. Lett., 99(1-3), 163102 (2011)
Lai C, Wang MM, Zeng GM, Liu YG, Huang DL, Zhang C, Wang RZ, Xu P, Cheng M, Huang C, Wu HP, Qin L, Appl. Surf. Sci., 390, 368 (2016)
Zhao D, Sheng G, Chen C, Wang X, Appl. Catal. B: Environ., 303, 111 (2012)
Ceotto M, Presti LL, Cappelletti G, Meroni D, Spadavecchia F, Zecca R, Phys. Chem. C., 116, 1764 (2012)
Hao YN, Guo HL, Tian L, Kang XF, RSC Adv., 5, 43750 (2015)
Liu YJ, Zhao JX, Caiab QH, Phys. Chem. Chem. Phys., 18, 5491 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로