Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 2, 2021
Accepted September 27, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Catalytic removal of volatile organic compounds using black mass from spent batteries
School of Environmental Engineering, University of Seoul, Seoul 02504, Korea 1Department of Chemical Engineering, Sunchon National University, Sunchon 57975, Korea 2Department of Environmental Engineering, Sunchon National University, Sunchon 57975, Korea 3Department of Environment and Energy Engineering, Chonnam National University, Gwangju 61186, Korea 4Department of Environmental Education, Mokpo National University, 61, Muan 58554, Korea
gikim@mokpo.ac.kr
Korean Journal of Chemical Engineering, January 2022, 39(1), 161-166(6), 10.1007/s11814-021-0963-5
Download PDF
Abstract
As battery usage increases every year, the number of spent batteries is also increasing, resulting in an important environmental issue. To examine the possibility of using the black mass (BM) obtained from spent batteries as a catalyst material for volatile organic compound (VOC) oxidation, the effect of the pretreating BM on its catalytic activity was investigated. Catalysts were prepared by pretreating the BM in three ways using water and sulfuric acid, and the catalytic performance of each catalyst was compared. The order of activity according to the pretreatment method was water and sulfuric acid hybrid pretreatment (WSBM)>sulfuric acid pretreatment (SBM)>water pretreatment (WBM)>raw (BM). The high adsorption energy site had a great influence on the activity of the catalyst. The number of acid sites and the easily movable lattice oxygen played an important role in the complete oxidation of benzene, toluene and o-xylene. At a gas hourly space velocity of 50,000 h-1, benzene, toluene, and o-xylene were removed completely on the WSBM catalyst at 370 °C, 360 °C, and 350 °C, respectively.
References
Belpomme D, Irigaray P, Hardell L, Clapp R, Montagnier L, Epstein S, Sasco AJ, Environ. Res., 105, 414 (2007)
Sarigiannis D, Karakitsios S, Gotti A, Liakos I, Environ. Int., 37, 743 (2011)
Guo H, Lee SC, Chan LY, Li WM, Environ. Res., 94, 57 (2004)
Wang QY, Yeung KL, Banares MA, Catal. Today, 356, 141 (2020)
Li Z, Yang DP, Chen Y, Du Z, Guo Y, Huang J, Li Q, Mol. Catal., 483, 110766 (2020)
Tan Y, Han S, Chen Y, Zhang Z, Li H, Li W, Yuan Q, Li X, Wang T, Lee SC, Sci. Total Environ., 777, 146241 (2021)
Zhang ZX, Jiang Z, Shangguan WF, Catal. Today, 264, 270 (2016)
Lee JE, Ok YS, Tsang DCW, Song JH, Jung SC, Park YK, Sci. Total Environ., 719, 137405 (2020)
Kamal MS, Razzak SA, Hossain MM, Atmos. Environ., 140, 117 (2016)
Abbas N, Hussain M, Russo N, Saracco G, Chem. Eng. J., 175, 330 (2011)
Jamalzadeh Z, Haghighi M, Asgari N, Front. Environ. Sci. Eng., 7, 365 (2013)
Qu J, Feng Y, Zhang Q, Cong Q, Luo CQ, Yuan X, J. Alloy. Compd., 622, 703 (2015)
Nan JM, Han DM, Cui M, Yang MJ, Pan LM, J. Hazard. Mater., 133(1-3), 257 (2006)
KRBA, 2019 (Korea Battery Recycling Association) Report.
Yao Z, Huang Z, Song Q, Tang Y, Qiu R, Ruan J, J. Clean Prod., 278, 123867 (2021)
Hu X, Robles A, Vikstrom T, Vaananen P, Zackrisson M, Ye G, J. Hazard. Mater., 411, 124928 (2021)
Charef SA, Affoune AM, Caballero A, Cruz-Yusta M, Morales J, Waste. Manage., 68, 518 (2017)
Ebin B, Petranikova M, Steenari BM, Ekberg C, Waste. Manage., 68, 508 (2017)
Duran FG, Barbero BP, Cadus LE, Rojas C, Centeno MA, Odriozola JA, Appl. Catal. B: Environ., 92(1-2), 194 (2009)
Kim SC, Shim WG, Appl. Catal. B: Environ., 98(3-4), 180 (2010)
Wu H, Wang L, Zhang J, Shen Z, Zhao J, Catal. Commun., 12(10), 859 (2011)
Tu YJ, You CF, Chang CK, J. Hazard. Mater., 258-259, 102 (2013)
Gallegos MV, Aparicio F, Peluso MA, Damonte LC, Sambeth JE, Mater. Res. Bull., 103, 158 (2018)
Deng B, Li TY, Tan WH, Wang ZX, Yu ZW, Xing SY, Lin H, Zhang H, Chemosphere, 204, 178 (2018)
Guo M, Li K, Liu L, Zhang H, Guo W, Hu X, Meng Jia J, Sun T, J. Hazard. Mater., 380, 120905 (2019)
Hoseini S, Rahemi N, Allahyari S, Tashihi M, J. Clean Prod., 232, 1134 (2019)
Belpomme D, Irigaray P, Hardell L, Clapp R, Montagnier L, Epstein S, Sasco AJ, Environ. Res., 105, 414 (2007)
Huff J, Chan P, Melnick R, Regul. Toxicol. Pharmacol., 58, 167 (2010)
Kim SC, Nahm SW, Park YK, J. Hazard. Mater., 300, 104 (2015)
Rouquerol F, et al., Adsorption by powders and porous solids. Principles, methodology and applications, Academic Press, London (1999).
Rochester CH, Topham SA, J. Chem. Soc.-Dalton Trans., 75, 1073 (1979)
Hepburn CA, Vale P, Brown AS, Simms NJ, McAdam EJ, Talanta, 141, 128 (2015)
Shim WG, Kim SC, Appl. Surf. Sci., 256(17), 5566 (2010)
Trawczynski J, Bielak B, Mista W, Appl. Catal. B: Environ., 55(4), 277 (2005)
Scire S, Minico S, Crisafulli C, Galvagno S, Catal. Commun., 2(6-7), 229 (2001)
Sarigiannis D, Karakitsios S, Gotti A, Liakos I, Environ. Int., 37, 743 (2011)
Guo H, Lee SC, Chan LY, Li WM, Environ. Res., 94, 57 (2004)
Wang QY, Yeung KL, Banares MA, Catal. Today, 356, 141 (2020)
Li Z, Yang DP, Chen Y, Du Z, Guo Y, Huang J, Li Q, Mol. Catal., 483, 110766 (2020)
Tan Y, Han S, Chen Y, Zhang Z, Li H, Li W, Yuan Q, Li X, Wang T, Lee SC, Sci. Total Environ., 777, 146241 (2021)
Zhang ZX, Jiang Z, Shangguan WF, Catal. Today, 264, 270 (2016)
Lee JE, Ok YS, Tsang DCW, Song JH, Jung SC, Park YK, Sci. Total Environ., 719, 137405 (2020)
Kamal MS, Razzak SA, Hossain MM, Atmos. Environ., 140, 117 (2016)
Abbas N, Hussain M, Russo N, Saracco G, Chem. Eng. J., 175, 330 (2011)
Jamalzadeh Z, Haghighi M, Asgari N, Front. Environ. Sci. Eng., 7, 365 (2013)
Qu J, Feng Y, Zhang Q, Cong Q, Luo CQ, Yuan X, J. Alloy. Compd., 622, 703 (2015)
Nan JM, Han DM, Cui M, Yang MJ, Pan LM, J. Hazard. Mater., 133(1-3), 257 (2006)
KRBA, 2019 (Korea Battery Recycling Association) Report.
Yao Z, Huang Z, Song Q, Tang Y, Qiu R, Ruan J, J. Clean Prod., 278, 123867 (2021)
Hu X, Robles A, Vikstrom T, Vaananen P, Zackrisson M, Ye G, J. Hazard. Mater., 411, 124928 (2021)
Charef SA, Affoune AM, Caballero A, Cruz-Yusta M, Morales J, Waste. Manage., 68, 518 (2017)
Ebin B, Petranikova M, Steenari BM, Ekberg C, Waste. Manage., 68, 508 (2017)
Duran FG, Barbero BP, Cadus LE, Rojas C, Centeno MA, Odriozola JA, Appl. Catal. B: Environ., 92(1-2), 194 (2009)
Kim SC, Shim WG, Appl. Catal. B: Environ., 98(3-4), 180 (2010)
Wu H, Wang L, Zhang J, Shen Z, Zhao J, Catal. Commun., 12(10), 859 (2011)
Tu YJ, You CF, Chang CK, J. Hazard. Mater., 258-259, 102 (2013)
Gallegos MV, Aparicio F, Peluso MA, Damonte LC, Sambeth JE, Mater. Res. Bull., 103, 158 (2018)
Deng B, Li TY, Tan WH, Wang ZX, Yu ZW, Xing SY, Lin H, Zhang H, Chemosphere, 204, 178 (2018)
Guo M, Li K, Liu L, Zhang H, Guo W, Hu X, Meng Jia J, Sun T, J. Hazard. Mater., 380, 120905 (2019)
Hoseini S, Rahemi N, Allahyari S, Tashihi M, J. Clean Prod., 232, 1134 (2019)
Belpomme D, Irigaray P, Hardell L, Clapp R, Montagnier L, Epstein S, Sasco AJ, Environ. Res., 105, 414 (2007)
Huff J, Chan P, Melnick R, Regul. Toxicol. Pharmacol., 58, 167 (2010)
Kim SC, Nahm SW, Park YK, J. Hazard. Mater., 300, 104 (2015)
Rouquerol F, et al., Adsorption by powders and porous solids. Principles, methodology and applications, Academic Press, London (1999).
Rochester CH, Topham SA, J. Chem. Soc.-Dalton Trans., 75, 1073 (1979)
Hepburn CA, Vale P, Brown AS, Simms NJ, McAdam EJ, Talanta, 141, 128 (2015)
Shim WG, Kim SC, Appl. Surf. Sci., 256(17), 5566 (2010)
Trawczynski J, Bielak B, Mista W, Appl. Catal. B: Environ., 55(4), 277 (2005)
Scire S, Minico S, Crisafulli C, Galvagno S, Catal. Commun., 2(6-7), 229 (2001)