ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 4, 2022
Accepted May 30, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Industrial symbiosis: Boron waste valorization through CO2 utilization

Chemical Engineering Department, Bursa Technical University, 16310-Bursa, Turkiye, Turkey 1Chemical Engineering Department, Bolu Abant Izzet Baysal University, 14030-Bolu, Turkiye, Turkey 2Chemical Engineering Department, Çankırı Karatekin University, 18100-Çankırı, Turkiye, Turkey 3Environmental Engineering Department, Ardahan University, 75000-Ardahan, Turkiye, Turkey
Korean Journal of Chemical Engineering, October 2022, 39(10), 2600-2614(15), 10.1007/s11814-022-1192-2
downloadDownload PDF

Abstract

Various wastes being generated globally and dumped on land by mineral processing activities pose great ecological and health problems. An example is the boron mineral beneficiation solid wastes. Even greater threat is anthropogenic carbon dioxide (CO2) emissions among key causes of prevalent climate change. By this work, we propose a symbiotic solution to alleviate both environmental threats through recovering valuable boron products from boron wastes (BW), while also utilizing and sequestering CO2 stably and permanently. This article presents the results on the effect of important operation parameters for the performance of such a process within the following ranges determined by preliminary tests: temperature: 20-60℃, solid-to-liquid ratio: 0.1-0.5 g/ml, reaction time: 15-120 min, stirring speed: 300-700 rpm and particle size: 150-600 μm. CO2 gas (99.9%) flow rate was maintained continuously at 1.57 l/min under atmospheric pressure. The important findings are (1) per ton of BW production of commercially valuable either (a) 310 kg sodium penta-borate or (b) 350 kg sodium penta-borate mixed with Na2CO3, depending on the process configuration, (c) 725 kg relatively pure CaCO3, a potential source for precipitated calcium carbonate (PCC) and (d) 72 kg CO2 utilization, (2) effective parameters for CO2 utilization, in decreasing order are temperature, solid-toliquid ratio and time, while stirring speed and particle size are ineffective within the range investigated and (3) the optimum operating conditions as: temperature: 60℃, solid-to liquid ratio: 0.1 g/ml, time: 90 min, stirring speed: 500 rpm and particle size: <180 μm.

References

https://www.statista.com/statistics/264982/world-boron-reserves-bymajor- countries/ (accessed 13 May 2022).
http://www.etimine.com/boron-minerals/ (accessed 13 May 2022).
http://www.etimine.com/boron-in-the-world/ (accessed 13 May 2022).
Helvaci C, in Encyclopedia of geology, 2nd ed., A. Elias, Scott, David Eds., Academic Press (2021).
Powoe SPB, Kromah V, Jafari M, Chelgani SC, Minerals, 11, 318 (2021)
Sajid M, Bary G, Asim M, Ahmad R, Ahamad MI, Alotaibi H, Rehman A, Khan I, Guoliang Y, Alexandria Eng. J., 61, 3069 (2022)
Karadagli E, Cicek B, Int. J. Appl. Ceram. Technol., 17, 563 (2020)
Cicek B, Karadagli E, Duman F, Ceram. Int., 44, 14264 (2018)
Cicek B, Karadagli E, Duman F, Constr. Build. Mater., 179, 232 (2018)
Kula I, Gutsche C, Erdoğan Y, Fittschen A, Fittschen UEA, Turkish J. Chem., 44, 1244 (2020)
Zhang Y, Guo Q, Li L, Jiang P, Jiao Y, Cheng Y, Materials, 9, 416 (2016)
https://agriculture.borax.com/USBorax/media/assets/infographics/borates-mineral-solubility.pdf (2021) (accessed 13 May 2022).
Albayrak ZNK, Turan E, Arab. J. Geosci., 14, 1002 (2021)
Health W, World Health, 4th ed., World Health Organization, Geneva (2011).
Xu Y, Jiang JQQ, Ind. Eng. Chem. Res., 47, 16 (2008)
Zaman M, Shahid SA, Heng L, Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques, Springer International Publishing, Cham (2018).
Kavas T, Build. Environ., 41, 1779 (2006)
Olgun A, Erdogan Y, Ayhan Y, Zeybek B, Ceram. Int., 31, 153 (2005)
http://www.geology.cz/rroum/stazeni/2004_BAT_REFERENCE_ DOCUMENT.pdf (2004) (accessed 13 May 2022).
Kula I, Olgun A, Sevinc V, Erdogan Y, Cem. Concr. Res., 32, 227 (2002)
Christogerou A, Lampropoulou P, Panagiotopoulos E, Constr. Build. Mater., 280, 122493 (2021)
Bayca SU, Theor. Found. Chem. Eng., 53, 395 (2019)
Christogerou A, Kavas T, Pontikes Y, Rathossi C, Angelopoulos GN, Ceram. Int., 36, 567 (2010)
Marangoni M, Ponsot I, Cicek B, Bernardo E, Adv. Appl. Ceram., 115, 427 (2016)
Tunali A, Ozel E, Turan S, J. European Ceram. Soc., 35, 1089 (2015)
Cicek B, Tucci A, Bernardo E, Will J, Boccaccini AR, Ceram. Int., 40, 6045 (2014)
Cicek B, Esposito L, Tucci A, Bernardo E, Boccaccini AR, Bingham PA, Adv. Appl. Ceram., 111, 415 (2012)
Kurama S, Kara A, Kurama H, J. European Ceram. Soc., 26, 755 (2006)
Olivier JGJ, Schure KM, Peters JAHW, PBL Netherlands Environ. Assess. Agency (2017).
Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_ReportHigh_Res.pdf (2019) (accessed 13 May 2022).
https://report.ipcc.ch/ar6wg3/pdf/IPCC_AR6_WGIII_FinalDraft_ FullReport.pdf (2022) (accessed 13 May 2022).
Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Summary for Policymakers: Global Warming of 1.5 ℃ (2018).
ESLR, https://gml.noaa.gov/ccgg/trends/ (2021) (accessed 13 May 2022).
https://www.co2.eart (accessed 22 April 2022).
Åberg A, Benton TG, Froggatt A, Giritharan A, Jeffs N, Quiggin D, Townend R, Chatham House, 6 (2021).
Zhao B, Su Y, Tao W, Li L, Peng Y, Int. J. Greenh. Gas Control, 9, 355 (2012)
You C, Kim J, Korean J. Chem. Eng., 37, 1649 (2020)
Kumar S, Mondal MK, Korean J. Chem. Eng., 37, 231 (2020)
Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R, Ind. Eng. Chem. Res., 51, 1438 (2012)
Zhang Z, Borhani TNG, El-Naas MH, in Exergetic, energetic and environmental dimensions, 1st ed., Dincer I, Colpan CO, Kızılkan O Eds., Elsevier (2018).
Creamer AE, Gao B, Environ. Sci. Technol., 50, 7276 (2016)
González CMO, Morales EMC, de M.N. Tellez A, Quezada TES, Kharissova OV, Méndez-Rojas MA, in Handbook of greener synthesis of nanomaterials and compounds, 1st ed., Kharisov B, Kharissova O Eds., Elsevier (2021).
Aniruddha R, Sreedhar I, Reddy BM, J. CO2 Util., 42, 101297 (2020)
Lee YR, Kim J, Ahn WS, Korean J. Chem. Eng., 30, 1667 (2013)
Mondal MK, Balsora HK, Varshney P, Energy, 46, 431 (2012)
Zunita M, Hastuti R, Alamsyah A, Khoiruddin K, Wenten IG, Sep. Purif. Rev., 51, 261 (2022)
Sanni ES, Sadiku ER, Okoro EE, Int. J. Chem. Eng., 2021, 1 (2021)
Kárászová M, Zach B, Petrusová Z, Červenka V, Bobák M, Šyc M, Izák P, Sep. Purif. Technol., 238, 116448 (2020)
Duke MC, Ladewig B, Smart S, Rudolph V, da Costa JCD, Front. Chem. Eng. China, 4, 184 (2010)
Wang X, Song C, Front. Energy Res., 8, 560849 (2020)
Abdah MAAM, Mokhtar M, Khoon LT, Sopian K, Dzulkurnain NA, Ahmad A, Sulaiman Y, Bella F, Su’ait MS, Energy Reports, 7, 8677 (2021)
Alidoost M, Mangini A, Caldera F, Anceschi A, Amici J, Versaci D, Fagiolari L, Trotta F, Francia C, Bella F, Bodoardo S, Chem.-Eur. J., 28, e2021042 (2022)
Freeman B, Hao P, Baker R, Kniep J, Chen E, Ding J, Zhang Y, Rochelle GT, Energy Procedia, 63, 605 (2014)
Nakhjiri AT, Heydarinasab A, J. Ind. Eng. Chem., 78, 106 (2019)
Scholes CA, Kentish SE, Qader A, Sep. Purif. Technol., 237, 116470 (2020)
Scholz M, Frank B, Stockmeier F, Falß S, Wessling M, Ind. Eng. Chem. Res., 52, 16929 (2013)
Shao P, He Z, Hu Y, Shen Y, Zhang S, Yu Y, Chem. Eng. J., 435, 134957 (2022)
Lavagna L, Syrrokostas G, Fagiolari L, Amici J, Francia C, Bodoardo S, Leftheriotis G, Bella F, J. Mater. Chem. A, 9, 19687 (2021)
Reina M, Scalia A, Auxilia G, Fontana M, Bella F, Ferrero S, Lamberti A, Adv. Sustain. Syst., 6, 2100228 (2022)
Zhang W, Xu Y, Wang Q, Energy, 241, 122524 (2022)
Jansen D, Gazzani M, Manzolini G, van Dijk E, Carbo M, Int. J. Greenh. Gas Control, 40, 167 (2015)
Omoregbe O, Mustapha AN, Steinberger-Wilckens R, El- Kharouf A, Onyeaka H, Energy Reports, 6, 1200 (2020)
Osman AI, Abu-Dahrieh JK, Cherkasov N, Fernandez-Garcia J, Walker D, Walton RI, Rooney DW, Rebrov E, Mol. Catal., 455, 38 (2018)
Osman AI, Deka TJ, Baruah DC, Rooney DW, Biomass Convers. Biorefinery, 1 (2020)
Wienchol P, Szlęk A, Ditaranto M, Energy, 198, 117352 (2020)
Wilberforce T, Olabi AG, Sayed ET, Elsaid K, Abdelkareem MA, Sci. Total Environ., 761, 143203 (2021)
Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA, Hallett JP, Energy Environ. Sci., 11, 1062 (2018)
Osman AI, Hefny M, Abdel Maksoud MIA, Elgarahy AM, Rooney DW, Environ. Chem. Lett., 19, 797 (2021)
Shreyash N, Sonker M, Bajpai S, Tiwary SK, Khan MA, Raj S, Sharma T, Biswas S, Energies, 14, 4978 (2021)
Sifat NS, Haseli Y, Energies, 12, 4143 (2019)
Gabrielli P, Gazzani M, Mazzotti M, Ind. Eng. Chem. Res., 59, 7033 (2020)
Ghiat I, Al-Ansari T, J. CO2 Util., 45, 101432 (2021)
Chao C, Deng Y, Dewil R, Baeyens J, Fan X, Renew. Sust. Energ. Rev., 138, 110490 (2021)
Ma J, Li L, Wang H, Du Y, Ma J, Zhang X, Wang Z, Engineering, In press (2022).
Smith E, Morris J, Kheshgi H, Teletzke G, Herzog H, Paltsev S, Int. J. Greenh. Gas Control, 109, 103367 (2021)
IEAGHG, The Status and Challenges of CO2 Shipping Infrastructures. Technical Report 2020-10 (2020).
National Petroleum Council, Meeting the Dual Challenge - A Roadmap to At-Scale Deployment of Carbon Capture, Use and Storage (2020).
Psarras P, He J, Pilorgé H, McQueen N, Jensen-Fellows A, Kian K, Wilcox J, Environ. Sci. Technol., 54, 6272 (2020)
Righetti TK, Oil Gas, Nat. Resour. Energy J., 3, 907 (2017)
Sanchez DL, Johnson N, McCoy ST, Turner PA, Mach KJ, Proc. Natl. Acad. Sci., 115, 4875 (2018)
[IEA] - International Energy Agency, Special Report on Carbon Capture, Utilisation and Storage: CCUS in Clean Energy Transitions (2020).
https://ec.europa.eu/energy/maps/pci_fiches/PciFiche_12.4.pdf (accessed 22 April 2022).
Energy Technologies Institute, https://www.eti.co.uk/programmes/carbon-capture-storage/strategic-uk-ccs-storage-appraisal (2016) (accessed 13 May 2022).
Arning K, Offermann-van Heek J, Sternberg A, Bardow A, Ziefle M, Environ. Innov. Soc. Transitions, 35, 292 (2020)
Mulyasari F, Harahap AK, Rio AO, Sule R, Kadir WGA, Int. J. Greenh. Gas Control, 108, 103312 (2021)
Arning K, Linzenich A, Engelmann L, Ziefle M, Energy Clim. Chang., 2, 100025 (2021)
Power Technology, https://www.power-technology.com/features/carbon-capture-cost/ (accessed 13 May 2022).
Adam Baylin-Stern and Niels Berghout, https://www.iea.org/commentaries/is-carbon-capture-too-expensive (accessed 13 May 2022) (2021).
https://www.iea.org/reports/direct-air-capture-3 (2022) (accessed 13 May 2022).
THE Verge, https://www.theverge.com/2022/4/7/23013822/carbon- dioxide-removal-direct-air-capture-climate-change (accessed 13 May 2022).
https://www.iea.org/reports/direct-air-capture-2022 (2022) (accessed 13 May 2022).
THE VERGE, https://www.theverge.com/2022/4/4/23009804/united-nations-climate-change-report-greenhouse-emissions-2030-ipcc (accessed 13 May 2022).
Pekdemir T, Carbon dioxide utilisation: Closing the carbon cycle: 1st ed., Elsevier Inc. (2014).
Baena-Moreno FM, Rodríguez-Galán M, Vega F, Alonso-Fariñas B, Arenas LFV, Navarrete B, Energy Sources Part A-Recovery Util. Environ. Eff., 41, 1403 (2019)
Schreiber A, Zapp P, Kuckshinrichs W, Int. J. Life Cycle Assess., 14, 547 (2009)
Warnke P, Cuhls K, Schomoch U, Daniel L, Andresscu L, Dragomir B, Gheirghiu R, Baboschi C, Curaj A, Parkkinen M, Kuusi O, 100 Radical Innovation Breakthroughs for the future, European Commission (2019).
Montes-Hernandez G, Bah M, Renard F, J. CO2 Util., 35, 272 (2020)
https://www.reportlinker.com/p06087127/Precipitated-Calcium-Carbonate-Market-Research-Report-by-Type-by-End-User-by- State-United-States-Forecast-to-Cumulative-Impact-of-COVID- 19.htmlutm_source=GNW (2021) (accessed 13 May 2022).
Kakizawa M, Yamasaki A, Yanagisawa Y, Energy, 26, 341 (2001)
Teir S, Eloneva S, Zevenhoven R, Energy Conv. Manag., 46, 2954 (2005)
Zevenhoven R, Eloneva S, Teir S, Catal. Today, 115, 73 (2006)
Park AHA, Fan LS, Chem. Eng. Sci., 59, 5241 (2004)
Nduagu E, Björklöf T, Fagerlund J, Wärn J, Geerlings H, Zevenhoven R, Miner. Eng., 30, 75 (2012)
Harrison AL, Power IM, Dipple GM, Environ. Sci. Technol., 47, 126 (2013)
Pasquier LC, Mercier G, Blais JF, Cecchi E, Kentish S, Environ. Sci. Technol., 48, 5163 (2014)
Kemache N, Pasquier LC, Cecchi E, Mouedhen I, Blais JF, Mercier G, Fuel Process. Technol., 166, 209 (2017)
Lee JH, Lee JH, Korean J. Chem. Eng., 38, 1757 (2021)
Bobicki ER, Liu Q, Xu Z, Zeng H, Prog. Energy Combust. Sci., 38, 302 (2012)
Bingöl MS, Çopur M, J. CO2 Util., 29, 29 (2019)
Ozekmekci M, Copur M, J. CO2 Util., 42, 101321 (2020)
Elçiçek H, Kocakerim MM, Braz. J. Chem. Eng., 35, 111 (2018)
https://www.indiamart.com/proddetail/sodium-pentaborate-1211448991.html (accessed 13 May 2022).
Kula I, Olgun A, Erdogan Y, Sevinc V, Cem. Concr. Res., 31, 491 (2001)
Olgun A, Kavas T, Erdogan Y, Once G, Build. Environ., 42, 2384 (2007)
Uçar N, Çalık A, Emre M, Akkurt I, Indoor Built Environ., 30, 1827 (2021)
Buli N, Abnett K, Twidale S, https://www.reuters.com/business/energy/eu-carbon-price-tops-50-euros-first-time-2021-05-04/ (2021) (accessed 13 May 2022).
IEA, https://www.iea.org/news/global-carbon-dioxide-emissionsare- set-for-their-second-biggest-increase-in-history (2021 (accessed 13 May 2022).
Hollander M, Rieman W III, Ind. Eng. Chem. Anal. Ed., 17, 602 (1945)
Xu S, Gao Q, Zhou C, Li J, Shen L, Lin H, Mater. Chem. Phys., 274, 125182 (2021)
Huang Z, Zeng Q, Liu Y, Xu Y, Li R, Hong H, Shen L, Lin H, J. Membr. Sci., 640, 119854 (2021)
Chen B, Xie H, Shen L, Xu Y, Zhang M, Yu H, Li R, Lin H, J. Membr. Sci., 640, 119820 (2021)
Rao L, You X, Chen B, Shen L, Xu Y, Zhang M, Hong H, Li R, Lin H, Chemosphere, 288, 132490 (2022)
Fang J, Chen Y, Fang C, Zhu L, Sep. Purif. Technol., 281, 119876 (2022)
Anderson JL, Eyring EM, Whittaker MP, J. Phys. Chem., 68, 1128 (1964)
Zhou Y, Fang C, Fang Y, Zhu F, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 83, 82 (2011)
Kabay N, Bryjak M, Hilal N, Boron separation processes, Elsevier, New York (2015).
Nian CY, Yang WH, Tarng YS, J. Mater. Process. Technol., 95, 90 (1999)
Phadke MS, Kackar RN, Speeney DV, Grieco MJ, Bell Syst. Tech. J., 62, 1273 (1983)
Pignatiello JJ, IIE Trans., 20, 247 (1988)
Ross PJ, Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design, 2nd Ed., McGraw-Hill, New York (1996).
Taguchi G, System of experimental design; quality resources, Unipub-Kraus International Publications, New York (1987).
Phadke MS, Quality engineering using robust design, Prentice-Hall, Englewood Cliffs, New Jersey (1989).
Çopur M, Pekdemir T, Çelik C, Çolak S, Ind. Eng. Chem. Res., 36, 682 (1997)
Islam MN, Pramanik A, J. Adv. Manuf. Syst., 15, 151 (2016)
Peace GS, Taguchi methods, a hands-on approach to quality engineering, Addison-Wesley, New York (1995).
Mook WG, in Environmental isotopes in the hydrological cycle - principles and applications, Mook WG Ed., (2001).
Barzagli F, Giorgi C, Mani F, Peruzzini M, J. CO2 Util., 22, 346 (2017)
Schubert DM, in Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA (2015).
Kitano Y, Okumura M, Idogake M, Idogaki M, Geochem. J., 13, 223 (1979)
Kitano Y, Okumura M, Idogaki M, Geochem. J., 12, 183 (1978)
http://www.webmineral.com/data/Sborgite.shtml#.YmsQUtpBw2z (2012) (accessed 13 May 2022).
Chukanov NV, Infrared spectra of mineral species, Springer Netherlands, Dordrecht (2014).
Merlino S, Acta Crystallogr. Sect. B-Struct. Sci., 28, 3559 (1972)
Spinosa ED, Hooie DT, Bennett RB, Summary report on emissions from the glass manufacturing industry, Environmental Protection Technology Series. EPA, Ohio (1979).
Pacheco-Torgal F, Shi C, Sanchez AP, Sánchez AP, Torgal FP, Carbon dioxide sequestration in cementitious construction materials, Woodhead Publishing (2018).
Schubert DM, in Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2015).
https://www.iea.org/news/global-carbon-dioxide-emissions-are-setfor-their-second-biggest-increase-in-history (2021) (accessed 13 May 2022).
Davis R, John P, in Statistical approaches with emphasis on design of experiments applied to chemical processes, InTech (2018).
https://www.made-in-china.com/products-search/hot-china-products/Calcium_Carbonate_Price.html (accessed 13 May 2022).
https://www.alibaba.com/showroom/pure-calcium-carbonate-price. html (accessed 13 May 2022).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로