ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 16, 2021
Accepted May 26, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Analysis of the extrusion pressure of a cylindrical extruder for extruding highly viscous fluids

1State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China 2School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
xiwenli@hust.edu.cn
Korean Journal of Chemical Engineering, October 2022, 39(10), 2623-2635(13), 10.1007/s11814-022-1191-3
downloadDownload PDF

Abstract

Extrusion pressure is crucial for the security and performance of a cylindrical extruder during the extrusion process. In this study, a validated CFD model was adopted to evaluate the relationship between the extrusion velocity, fluid viscosity, and the extrusion pressure of a cylindrical extruder while extruding highly viscous fluids. The simulated and experimental results of the extrusion pressure and velocity profiles show good agreement. This study reveals that extrusion pressure evolution can be divided into two stages during the extrusion process. At stage I, the distance between the ram and the bottom of the vessel (liquid height) is greater than the critical height and the extrusion pressure remains almost constant. At stage II, the distance is less than the critical height and the extrusion pressure increases exponentially. The results indicate that an increase in extrusion velocity and fluid viscosity leads to a linear increase in the extrusion pressure at stage I. Furthermore, by introducing a pressure number, Np, and a pressurerelated Reynolds number, Rep, a novel correlation of the extrusion pressure with the extrusion velocity, viscosity of highly viscous fluids and liquid height has been developed.

References

Naumann S, Schweiggert-Weisz U, Martin A, Schuster M, Eisner P, Food Hydrocolloids, 111, 106222 (2021)
Vitorino N, Ribeiro MJ, Abrantes JCC, Labrincha JA, Frade JR, Ceram. Int., 40, 14543 (2014)
Althaus TO, Windhab EJ, Powder Technol., 211, 10 (2011)
Mascia S, Patel MJ, Rough SL, Martin PJ, Wilson DI, Eur. J. Pharm. Sci., 29, 22 (2006)
Prabha K, Ghosh P, Abdullah S, Joseph RM, Krishnan R, Rana SS, Pradhan RC, Future Foods, 3, 100019 (2021)
Lee YS, Park OO, Korean J. Chem. Eng., 11, 1 (1994)
Basterfield RA, Lawrence CJ, Adams MJ, Chem. Eng. Sci., 60, 2599 (2005)
Khelifi H, Perrot A, Lecompte T, Rangeard D, Ausias G, Powder Technol., 249, 258 (2013)
Cortada-Garcia M, Weheliye WH, Dore V, Mazzei L, Angeli P, Chem. Eng. Sci., 179, 133 (2018)
Yang G, Terzis A, Zarikos I, Hassanizadeh SM, Weigand B, Helmig R, Chem. Eng. J., 370, 444 (2019)
Jin J, Fan Y, Korean J. Chem. Eng., 37, 755 (2020)
Silva A, Silva FJG, Campilho RDSG, Neves PMPF, J. Manuf. Processes, 65, 80 (2021)
Zhang H, Zhao X, Deng X, Sutton MA, Reynolds AP, McNeill SR, Ke X, Int. J. Mech. Sci., 85, 130 (2014)
Serdeczny MP, Comminal R, Mollah MT, Pedersen DB, Spangenberg J, Additive Manuf., 36, 101454 (2020)
Soanuch C, Korkerd K, Phupanit J, Piemjaiswang R, Piumsomboon P, Chalermsinsuwan B, Korean J. Chem. Eng., 38, 540 (2021)
Jay P, Magnin A, Piau JM, J. Fluids Eng., 124, 700 (2002)
Liu Q, Zhang N, Wei W, Hu X, Tan Y, Yu Y, Deng Y, Bi C, Zhang L, Zhang H, J. Food Eng., 275, 109861 (2020)
Ryan DJ, Simmons MJH, Baker MR, Chem. Eng. Sci., 163, 123 (2017)
Horrobin DJ, Nedderman RM, Chem. Eng. Sci., 53, 3215 (1998)
Jiang T, Munguia-Lopez JG, Flores-Torres S, Kort-Mascort J, Kinsella JM, Appl. Phys. Rev., 6, 11310 (2019)
Ribeiro MJ, Blackburn S, Ferreira JM, Labrincha JA, J. European Ceram. Soc., 26, 817 (2006)
Li YY, Bridgwater J, Powder Technol., 108, 65 (2000)
Lin Z, Jiang T, Kinsella JM, Shang J, Luo Z, Mater. Lett., 303, 130480 (2021)
Benbow JJ, Oxley EW, Bridgwater J, Chem. Eng. Sci., 42, 2151 (1987)
Bhattacharjee C, Korean J. Chem. Eng., 21, 556 (2004)
Lachin K, Turchiuli C, Pistre V, Cuvelier G, Mezdour S, Ducept F, Chem. Eng. Res. Des., 163, 36 (2020)
André C, Demeyre JF, Gatumel C, Berthiaux H, Delaplace G, Chem. Eng. J., 198-199, 371 (2012)
Davarpanah M, Shi H, Nikrityuk P, Hashisho Z, Chem. Eng. Res. Des., 173, 289 (2021)
Rough SL, Wilson DI, Bridgwater J, Chem. Eng. Res. Des., 80, 701 (2002)
Ryltseva KE, Borzenko EI, Shrager GR, J. Non-Newton. Fluid Mech., 286, 104445 (2020)
Bouras H, Haroun Y, Philippe R, Augier F, Fongarland P, Chem. Eng. Sci., 233, 116378 (2021)
Connelly RK, Kokini JL, J. Food Eng., 79, 956 (2007)
Bumrungthaichaichan E, Korean J. Chem. Eng., 33, 3050 (2016)
Liu H, Liu J, Leu MC, Landers R, Huang T, Int. J. Adv. Manuf. Technol., 67, 899 (2013)
Sun Y, Yu J, Wang W, Yang S, Hu X, Feng J, Korean J. Chem. Eng., 37, 743 (2020)
Keramat F, Mirvakili A, Shariati A, Rahimpour MR, Korean J. Chem. Eng., 38, 2020 (2021)
Choi SI, Feng JP, Seo HS, Jo YM, Lee HC, Korean J. Chem. Eng., 35, 2164 (2018)
Han W, Chen X, Chem. Eng. Res. Des., 145, 213 (2019)
Melzi S, Comput. Graphics, 82, 117 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로