ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 3, 2022
Accepted April 14, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Temperature-swing transesterification for the coproduction of biodiesel and ethyl levulinate from spent coffee grounds

Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
jaewlee@kaist.ac.kr
Korean Journal of Chemical Engineering, October 2022, 39(10), 2754-2763(10), 10.1007/s11814-022-1145-9
downloadDownload PDF

Abstract

This study introduces a temperature swing method for simultaneously producing biodiesel and ethyl levulinate through in-situ transesterification of spent coffee grounds. Effects of temperature and the amounts of catalyst and ethanol were investigated and it was found that the temperature predominantly affects the yield. Response surface methodology was employed to find the optimal conditions for maximizing biodiesel and ethyl levulinate yield. The highest biodiesel yield of 14.91±0.83 wt% was found at 140℃, while the highest ethyl levulinate yield of 3.29±0.15 wt% was found at 160℃. The maximum ethyl levulinate yield occurs at higher temperature than biodiesel due to decomposition of cellulose to produce ethyl levulinate, while the biodiesel yield decreases at elevated temperature due to unwanted humin formation. The proposed swing operation of the optimal temperature from 160 to 140℃ gives the highest yield of 15.02 wt% biodiesel and 2.76 wt% ethyl levulinate in the single-pot process.

References

Lim HS, Kim Y, Kang D, Lee M, Jo A, Lee JW, ACS Catal., 11, 12220 (2021)
Zhang JS, Zhao Y, Akins DL, Lee JW, J. Phys. Chem. C, 115, 8386 (2011)
Kim M, Yang J, Kim B, Lee JW, Korean J. Chem. Eng., 37, 1933 (2020)
Kang S, Realff MJ, Yuan Y, Chance R, Lee JH, Korean J. Chem. Eng., 39, 1524 (2022)
Yadav AK, Khan ME, Pal A, Korean J. Chem. Eng., 34, 340 (2017)
Park J, Kim B, Son J, Lee JW, Bioresour. Technol., 249, 494 (2018)
Dey S, Reang NM, Das PK, Deb M, J. Clean Prod., 286, 124981 (2021)
Singh D, Sharma D, Soni SL, Sharma S, Sharma PK, Jhalani A, Fuel, 262, 116553 (2020)
Kim B, Heo HY, Son J, Yang J, Chang YK, Lee JH, Lee JW, Algal Res., 41, 101557 (2019)
Mata TM, Martins AA, Caetano NS, Renew. Sust. Energ. Rev., 14, 217 (2010)
ICO, World Coffee Consumption, 2020.
Fernandes AS, Mello FVC, Thode S, Carpes RM, Honorio JG, Marques MRC, Felzenszwalb I, Ferraz ERA, Ecotox. Environ. Safe., 141, 30 (2017)
Mata TM, Martins AA, Caetano NS, Bioresour. Technol., 247, 1077 (2018)
Campos-Vega R, Loarca-Piña G, Vergara-Castañeda HA, Oomah BD, Trends Food Sci. Technol., 45, 24 (2015)
Vandeponseele A, Draye M, Piot C, Chatel G, Green Chem., 22, 8544 (2020)
Go AW, Sutanto, Ong LK, Tran-Nguyen PL, Ismadji S, Ju YH, Renew. Sust. Energ. Rev., 60, 284 (2016)
Skorupskaite V, Makareviciene V, Gumbyte M, Fuel Process. Technol., 150, 78 (2016)
Kim B, Park J, Son J, Lee JW, Bioresour. Technol., 244, 423 (2017)
Mallick N, Bagchi SK, Koley S, Singh AK, Front. Microbiol., 7, 1019 (2016)
Im H, Kim B, Lee JW, Bioresour. Technol., 193, 386 (2015)
Kim B, Im H, Lee JW, Bioresour. Technol., 185, 421 (2015)
Park J, Kim B, Lee JW, Bioresour. Technol., 221, 55 (2016)
Moller M, Nilges P, Harnisch F, Schroder U, Chemsuschem, 4, 566 (2011)
Plaza M, Turner C, TrAC, 71, 39 (2015)
Kim B, Yang J, Kim M, Lee JW, Bioresour. Technol., 303, 122898 (2020)
Yang J, Park J, Son J, Kim B, Lee JW, Bioresour. Technol. Rep., 2, 84 (2018)
Park J, Kim B, Chang YK, Lee JW, Bioresour. Technol., 230, 8 (2017)
Joshi H, Moser BR, Toler J, Smith WF, Walker T, Biomass Bioenerg., 35, 3262 (2011)
Silva JFL, Grekin R, Mariano AP, Maciel R, Energy Technol., 6, 613 (2018)
Im H, Lee H, Park MS, Yang JW, Lee JW, Bioresour. Technol., 152, 534 (2014)
Demirbas A, Energ. Explor. Exploit., 25, 63 (2007)
Kang SM, Fu JX, Zhang G, Renew. Sust. Energ. Rev., 94, 340 (2018)
Abomohra AE, Zheng X, Wang Q, Huang J, Ebaid R, Bioresour. Technol., 323, 124640 (2021)
Kim B, Chang YK, Lee JW, Bioprocess. Biosyst. Eng., 40, 723 (2017)
Ahmad E, Alam MI, Pant KK, Haider MA, Green Chem., 18, 4804 (2016)
Tukacs JM, Hollo AT, Retfalvi N, Csefalvay E, Dibo G, Havasi D, Mika LT, Chemistryselect, 2, 1375 (2017)
Son J, Kim B, Park J, Yang J, Lee JW, Bioresour. Technol., 259, 465 (2018)
Hu X, Lievens C, Larcher A, Li CZ, Bioresour. Technol., 102, 10104 (2011)
Cha JS, Um BH, Korean J. Chem. Eng., 37, 1149 (2020)
van Zandvoort I, Wang YH, Rasrendra CB, van Eck ERH, Bruijnincx PCA, Heeres HJ, Weckhuysen BM, Chemsuschem, 6, 1745 (2013)
Hoang TMC, van Eck ERH, Bula WP, Gardeniers JGE, Lefferts L, Seshan K, Green Chem., 17, 959 (2015)
Al-Hamamre Z, Foerster S, Hartmann F, Kröger M, Kaltschmitt M, Fuel, 96, 70 (2012)
Tuntiwiwattanapun N, Tongcumpou C, Ind. Crop. Prod., 117, 359 (2018)
Supaporn P, Yeom SH, Korean J. Chem. Eng., 34, 360 (2017)
Liu C, Lu X, Yu Z, Xiong J, Bai H, Zhang R, Catalysts, 10, 1006 (2020)
Unlu D, Ilgen O, Hilmioglu ND, Chem. Eng. J., 302, 260 (2016)
Yusoff MFM, Xu XB, Guo Z, JAOCS, 91, 525 (2014)
Kim TH, Oh YK, Lee JW, Chang YK, Algal Res., 26, 431 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로