ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 1, 2022
Accepted March 9, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effects of MgCl2 loading on ammonia capacity of activated carbon for application in temperature swing adsorption, pressure swing adsorption, and pressure-temperature swing adsorption process

Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea 1Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea 2Clean Fuel Research Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea
Korean Journal of Chemical Engineering, October 2022, 39(10), 2775-2782(8), 10.1007/s11814-022-1102-7
downloadDownload PDF

Abstract

MgCl2-loaded activated carbons were prepared by ultrasonic impregnation method for the application in ammonia enrichment or ammonia decomposition process. Anhydrous magnesium chloride (MgCl2) was selected as an active promoter for ammonia adsorption, and cyclic adsorption performance was comparatively analyzed according to MgCl2 loading (3-20wt% in Mg basis). The physical and chemical properties of the adsorbents were analyzed by TGA, BET, SEM, EDX, and NH3-TPD. The adsorption and desorption characteristics were analyzed via temperature swing (TSA), pressure swing (PSA), and pressure-temperature swing (PTSA) mode breakthrough tests. It was confirmed that 10 wt% Mg loaded adsorbent (AC-Mg(10)) among the prepared sorbents showed the best performance in the cyclic adsorption process, showing the ammonia capacity of 2.461mmol NH3/g in TSA mode operation. Even though the capacity was lower (around 1mmol NH3/g) in PSA mode, the PSA mode operation was very attractive due to its stable and convenient operation conditions. The ammonia desorption temperature for TSA and PTSA mode operation was determined based on the van’t Hoff equation which define equilibrium pressure and temperature of three sequential reaction of MgCl2 with ammonia. PTSA mode breakthrough test showed the excellent performance even with a mild increase of temperature for desorption. AC-Mg(10) showed a remarkable adsorption capacity of 4.062mmol NH3/g in the first cycle at an elevated pressure. When a mild temperature, 393 K, was applied for desorption, the cyclic adsorption capacity of 2.769mmol NH3/g was achieved, which exceeded the one in TSA mode operation.

References

Shipman MA, Symes MD, Catal. Today, 286, 57 (2017)
Giddey S, Badwal S, Kulkarni A, Int. J. Hydrog. Energy, 38, 14576 (2013)
Avery W, Int. J. Hydrog. Energy, 13, 761 (1988)
Lan R, Irvine JT, Tao S, Int. J. Hydrog. Energy, 37, 1482 (2012)
Kozuch S, Shaik S, J. Phys. Chem. A, 112, 6032 (2008)
Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W, Nat. Geosci., 1, 636 (2008)
Kim K, Lee SJ, Kim DY, Yoo CY, Choi JW, Kim JN, Woo Y, Yoon HC, Han JI, ChemSusChem, 11, 120 (2018)
Chen S, Perathoner S, Ampelli C, Mebrahtu C, Su D, Centi G, Angew. Chem.-Int. Edit., 56, 2699 (2017)
Jeong EY, Yoo CY, Jung CH, Park JH, Park YC, Kim JN, Oh SG, Woo Y, Yoon HC, ACS Sustain. Chem. Eng., 5, 9662 (2017)
Kordali V, Kyriacou G, Lambrou C, Chem. Commun., 1673 (2000)
Yun DS, Joo JH, Yu JH, Yoon HC, Kim JN, Yoo CY, J. Power Sources, 284, 245 (2015)
Kyriakou V, Garagounis I, Vasileiou E, Vourros A, Stoukides M, Catal. Today, 286, 2 (2017)
Garagounis I, Kyriakou V, Skodra A, Vasileiou E, Stoukides M, Front. Energy Res., 2, 1 (2014)
Amar IA, Lan R, Petit CT, Tao S, J. Solid State Electrochem., 15, 1845 (2011)
Morlanés N, Katikaneni SP, Paglieri SN, Harale A, Solami B, Sarathy SM, Gascon J, Chem. Eng. J., 408, 127310 (2021)
Rieth AJ, Dincă M, J. Am. Chem. Soc., 140, 3461 (2018)
Bandosz TJ, Petit C, J. Colloid Interface Sci., 338, 329 (2009)
Oktavitri NI, Purnobasuki H, Kuncoro EP, Purnamasari I, IPTEK J. Proceedings Series, 3, 26 (2017)
Gonçalves M, Sánchez-García L, Jardim EDO, Silvestre-Albero J, Rodríguez-Reinoso F, Environ. Sci. Technol., 45, 10605 (2011)
Huang CC, Li HS, Chen CH, J. Hazard. Mater., 159, 523 (2008)
Khabzina Y, Farrusseng D, Microporous Mesoporous Mater., 265, 143 (2018)
Somy A, Mehrnia MR, Amrei HD, Ghanizadeh A, Safari M, Int. J. Greenhouse Gas Control, 3, 249 (2009)
Huang CC, Chen HM, Chen CH, Huang JC, Sep. Purif. Technol., 70, 291 (2010)
Park JH, Hwang RH, Yoon HC, Yi KB, J. Ind. Eng. Chem., 74, 199 (2019)
Park JH, Rasheed HU, Cho KH, Yoon HC, Yi KB, Korean J. Chem. Eng., 37, 1029 (2020)
Sandrock G, J. Alloy. Compd., 293, 877 (1999)
Schlapbach L, Züttel A, Nature, 14, 265 (2011)
Christensen CH, Sørensen RZ, Johannessen T, Quaade UJ, Honkala K, Elmøe TD, Køhler R, Nørskov JK, J. Mater. Chem., 15, 4106 (2005)
Hummelshøj JS, Sørensen RZ, Kustova MY, Johannessen T, Nørskov JK, Christensen CH, J. Am. Chem. Soc., 128, 16 (2006)
Elmøe TD, Sørensen RZ, Quaade U, Christensen CH, Nørskov JK, Johannessen T, Chem. Eng. Sci., 61, 2618 (2006)
Sørensen RZ, Hummelshøj JS, Klerke A, Reves JB, Vegge T, Nørskov JK, Christensen CH, J. Am. Chem. Soc., 130, 8660 (2008)
Touzain P, Moundanga-Iniamy M, Mol. Cryst. Liq. Cryst. Sci. Technol., 245, 243 (1994)
Huang Q, Lu G, Wang J, Yu J, J. Anal. Appl. Pyrolysis, 91, 159 (2011)
Al Amer AM, Laoui T, Abbas A, Al-Aqeeli N, Patel F, Khraisheh M, Atieh MA, Hilal N, Mater. Des., 89, 549 (2016)
Park JH, Baek JH, Jo GH, Rasheed HU, Yi KB, Trans. Korean Hydrog. New Energy Soc., 30, 95 (2019)
Jeong JM, Park JH, Baek JH, Hwang RH, Jeon SG, Yi KB, Korean J. Chem. Eng., 34, 81 (2017)
Wu Z, Jin R, Liu Y, Wang H, Catal. Commun., 9, 2217 (2008)
Travlou NA, Bandosz TJ, Carbon, 117, 228 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로