Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 9, 2022
Accepted March 15, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Experimental and computational phase behavior analysis of the PGME+CO2 and PGMEA+CO2 mixture at high pressures
Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, Korea 1Jaewon Industrial Co., Yeosu, Jeonnam 59618, Korea
Korean Journal of Chemical Engineering, October 2022, 39(10), 2783-2791(9), 10.1007/s11814-022-1110-7
Download PDF
Abstract
The vapor+liquid equilibrium (VLE) for the 2-components of propylene glycol monomethyl ether (PGME) and propylene glycol monomethyl ether acetate (PGMEA) in high pressure (HP) supercritical carbon dioxide (S-CO2) was evaluated. The solubility data determination was performed by the synthetic method at T=(313.2 to 393.2) K and p=(1.92 to 16.5) MPa. The obtained results indicated that the solubility of S-CO2 was found to increase monotonically with the increase of system temperature and mole fraction of PGME and PGMEA in binary (solute+solvent) mixtures. The solubility curve of PGME and PGMEA in the PGME+S-CO2 and PGMEA+S-CO2 models increases in connection with the increasing T at a steady pressure. The PGME+S-CO2 and PGMEA+S-CO2 models reveal type-I phase behavior (PB). The critical properties were achieved by Joback and Aspen plus method. Moreover, the experimental result adequately correlated with the Peng-Robinson equation of state (P-R E-O-S). Root mean square deviation (RMSD) for the PGME+S-CO2 [Joback: kij=0.0, hij=-0.060, Aspen: kij=0.0, hij=-0.065] and PGMEA+S-CO2 [Joback: kij=0.0, hij=0.0, Aspen: kij=0.0, hij=0.0] systems using two factors determined at 353.2 K was 9.07% (Joback), 10.98% (Aspen) and 4.03% (Joback), 4.78% (Aspen), respectively.
References
Zelijko K, Cor D, Hrncic MK, J. Chem. Eng. Data, 63, 860 (2018)
Philip GJ, Walter L, Chemical synthesis using supercritical fluids, Weinheim, Wiley-VCH (1999).
Brunner G, Annu. Rev. Chem. Biomol. Eng., 1, 321 (2010)
Anne LS, Aymonier C, Cansell F, J. Chem. Technol. Biotechnol., 85, 583 (2010)
Byun HS, Lee HY, J. Chem. Eng. Data, 51, 1436 (2006)
Byun HS, Choi MY, Lim JS, J. Supercrit. Fluids, 37, 323 (2006)
Jang YS, Jeong HH, Byun HS, J. Ind. Eng. Chem., 18, 414 (2012)
Kim SH, Park MH, Lim JS, Byun HS, J. Ind. Eng. Chem., 16, 962 (2010)
Cho SH, Yang DS, Byun HS, Fluid Phase Equilib., 351, 18 (2013)
Kim CR, Byun HS, Fluid Phase Equilib., 381, 51 (2014)
Cho SH, Kim CR, Yoon SD, Byun HS, Fluid Phase Equilib., 396, 74 (2015)
Byun HS, Lee DH, Ind. Eng. Chem. Res., 45, 3354 (2006)
Byun HS, Hasch BM, McHugh MA, Fluid Phase Equilib., 115, 179 (1996)
Byun HS, Park C, Korean J. Chem. Eng., 19, 126 (2002)
Byun HS, Shin JS, J. Chem. Eng. Data, 48, 97 (2003)
Michele L, McHugh MA, Fluid Phase Equilib., 157, 285 (1999)
Wu Y, Newkirk MS, Dudek ST, Williams K, Krukonis V, McHugh MA, Ind. Eng. Chem. Res., 53, 10133 (2014)
Liu J, Li D, Byun HS, McHugh MA, Fluid Phase Equilib., 267, 39 (2008)
Cowie JMG, McEwen IJ, Polymer, 24, 1453 (1983)
Cowie JMG, McEwen IJ, J. Chem. Soc.-Faraday Trans., 70, 171 (1974)
Cowie JMG, McEwen IJ, British Polymer J., 7, 459 (1975)
Matsukawa H, Fujii A, Hoshina TA, Otake K, J. Chem. Eng. Data, 548, 113172 (2021)
Sudhir NVKA, Mellein BR, Saurer EM, Brennecke JF, J. Phys. Chem. B, 108, 20355 (2004)
McHugh MA, Krukonis VJ, Supercritical fluid extraction, 2nd ed., Butterworth-Heinemann, Stoneham (1994).
McHugh MA, Rindfleisch F, Kuntz PT, Schmaltz C, Buback M, Polymer, 39, 6049 (1998)
Lee SH, LoStracco MA, Hasch BM, McHugh MA, J. Phys. Chem., 98, 4055 (1994)
Ghoderao PNP, Dhamodharan D, Byun HS, J. Chem. Thermodyn., 168, 106746 (2022)
Cho SH, Kim CR, Yoon SD, Byun HS, Fluid Phase Equilib., 396, 74 (2015)
Mallepally RR, Gadepalli VS, Bamgbade BA, Cain N, McHugh MA, J. Chem. Eng. Data, 61, 2818 (2016)
Wu Y, Newkirk MS, Dudek ST, Williams K, Krukonis V, McHugh MA, Ind. Eng. Chem. Res., 53, 10133 (2014)
Albrecht KL, Stein FP, Han SJ, Gregg CJ, Radosz M, Fluid Phase Equilib., 117, 84 (1996)
Folie B, Gregg C, Luft G, Radosz M, Fluid Phase Equilib., 120, 11 (1996)
Kiran E, J. Supercrit. Fluids, 110, 126 (2016)
Poling BE, Prausnitz JM, O'connell JP, The properties of gases and liquids, Vol. 5, McGraw-Hill, New York (2001).
Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59 (1976)
Hsieh CT, Lee MJ, Lin HM, Ind. Eng. Chem. Res., 45, 2123 (2006)
Robert LS, van Konynenburg PH, Discuss. Faraday Soc., 49, 87 (1970)
Philip GJ, Walter L, Chemical synthesis using supercritical fluids, Weinheim, Wiley-VCH (1999).
Brunner G, Annu. Rev. Chem. Biomol. Eng., 1, 321 (2010)
Anne LS, Aymonier C, Cansell F, J. Chem. Technol. Biotechnol., 85, 583 (2010)
Byun HS, Lee HY, J. Chem. Eng. Data, 51, 1436 (2006)
Byun HS, Choi MY, Lim JS, J. Supercrit. Fluids, 37, 323 (2006)
Jang YS, Jeong HH, Byun HS, J. Ind. Eng. Chem., 18, 414 (2012)
Kim SH, Park MH, Lim JS, Byun HS, J. Ind. Eng. Chem., 16, 962 (2010)
Cho SH, Yang DS, Byun HS, Fluid Phase Equilib., 351, 18 (2013)
Kim CR, Byun HS, Fluid Phase Equilib., 381, 51 (2014)
Cho SH, Kim CR, Yoon SD, Byun HS, Fluid Phase Equilib., 396, 74 (2015)
Byun HS, Lee DH, Ind. Eng. Chem. Res., 45, 3354 (2006)
Byun HS, Hasch BM, McHugh MA, Fluid Phase Equilib., 115, 179 (1996)
Byun HS, Park C, Korean J. Chem. Eng., 19, 126 (2002)
Byun HS, Shin JS, J. Chem. Eng. Data, 48, 97 (2003)
Michele L, McHugh MA, Fluid Phase Equilib., 157, 285 (1999)
Wu Y, Newkirk MS, Dudek ST, Williams K, Krukonis V, McHugh MA, Ind. Eng. Chem. Res., 53, 10133 (2014)
Liu J, Li D, Byun HS, McHugh MA, Fluid Phase Equilib., 267, 39 (2008)
Cowie JMG, McEwen IJ, Polymer, 24, 1453 (1983)
Cowie JMG, McEwen IJ, J. Chem. Soc.-Faraday Trans., 70, 171 (1974)
Cowie JMG, McEwen IJ, British Polymer J., 7, 459 (1975)
Matsukawa H, Fujii A, Hoshina TA, Otake K, J. Chem. Eng. Data, 548, 113172 (2021)
Sudhir NVKA, Mellein BR, Saurer EM, Brennecke JF, J. Phys. Chem. B, 108, 20355 (2004)
McHugh MA, Krukonis VJ, Supercritical fluid extraction, 2nd ed., Butterworth-Heinemann, Stoneham (1994).
McHugh MA, Rindfleisch F, Kuntz PT, Schmaltz C, Buback M, Polymer, 39, 6049 (1998)
Lee SH, LoStracco MA, Hasch BM, McHugh MA, J. Phys. Chem., 98, 4055 (1994)
Ghoderao PNP, Dhamodharan D, Byun HS, J. Chem. Thermodyn., 168, 106746 (2022)
Cho SH, Kim CR, Yoon SD, Byun HS, Fluid Phase Equilib., 396, 74 (2015)
Mallepally RR, Gadepalli VS, Bamgbade BA, Cain N, McHugh MA, J. Chem. Eng. Data, 61, 2818 (2016)
Wu Y, Newkirk MS, Dudek ST, Williams K, Krukonis V, McHugh MA, Ind. Eng. Chem. Res., 53, 10133 (2014)
Albrecht KL, Stein FP, Han SJ, Gregg CJ, Radosz M, Fluid Phase Equilib., 117, 84 (1996)
Folie B, Gregg C, Luft G, Radosz M, Fluid Phase Equilib., 120, 11 (1996)
Kiran E, J. Supercrit. Fluids, 110, 126 (2016)
Poling BE, Prausnitz JM, O'connell JP, The properties of gases and liquids, Vol. 5, McGraw-Hill, New York (2001).
Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59 (1976)
Hsieh CT, Lee MJ, Lin HM, Ind. Eng. Chem. Res., 45, 2123 (2006)
Robert LS, van Konynenburg PH, Discuss. Faraday Soc., 49, 87 (1970)