ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 26, 2021
Accepted April 24, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Modeling and optimization of dynamic viscosity of oil-based nanofluids containing alumina particles and carbon nanotubes by response surface methodology (RSM)

Department of Mechanical Engineering, Imam Hossein University, Tehran, Iran 1Department of Chemical Engineering, Imam Hossein University, Tehran, Iran 2Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
TToghraee@iaukhsh.ac.ir
Korean Journal of Chemical Engineering, October 2022, 39(10), 2800-2809(10), 10.1007/s11814-022-1156-6
downloadDownload PDF

Abstract

The dynamic viscosity of MWCNT-Al2O3 (40 : 60)/SAE50 nanofluid (NF) is investigated. NF viscosity modeling is also performed using the response surface methodology (RSM). Several different models are proposed, including modified and unmodified cubic, quartic and fifth models, and the best modeling is selected using the parameters R2, Adjusted R2, Predicted R2 and Square root of the residual mean square (Std. Dev.). The results show that the fifth-order model has values of 0.9997, 0.9997, 0.9996 and 2.39 for R2, Adjusted R2, Predicted R2 and Std. Dev. parameters, respectively, which indicates high accuracy of modeling. Using the perturbation diagram, it was found that among the parameters of temperature, solid volume fraction (φ) and shear rate (γ), the temperature parameter has the greatest effect on the dynamic viscosity of NF. The trend of changes in viscosity also shows that φ and γ have little effect on viscosity. Due to the importance of low viscosity in fluid flow and pumping, the optimal values of NF viscosity are presented, including dynamic viscosity equal to 108.092 cP in φ =0.063 and T=49.998℃ and γ =7,866.7786 s-1.

References

Zhang N, Jiao B, Ye Y, Kong Y, Du X, Liu R, Cong B, Yu L, Jia S, Jia K, Energy Conv. Manag., 253, 115124 (2022)
Ye Y, Jiao B, Kong Y, Liu R, Du X, Jia K, Yan S, Chen D, Appl. Therm. Eng., 202, 117849 (2022)
Huang K, Su B, Li T, Ke H, Lin M, Wang Q, Appl. Therm. Eng., 204, 117942 (2022)
Sun L, Wang G, Zhang C, Jin Q, Song Y, Nanotechnol. Rev., 10(1), 1339 (2021)
Chu YM, Nazir U, Sohail M, Selim MM, Lee JR, Fractal Fractional, 5(3), 119 (2021)
Li H, Xu P, Liu D, He J, Zu H, Song J, Zhang J, Tian F, Yun M, Wang F, Nanotechnology, 32(37), 375202 (2021)
Cao M, Chang Z, Tan J, Wang X, Zhang P, Lin S, Liu J, Li A, ACS Appl. Mater. Interfaces, 14(11), 13025 (2022)
Wu H, Zhang F, Zhang Z, Hou L, Int. J. Multiph. Flow, 15, 104043 (2022)
Chu YM, Shankaralingappa BM, Gireesha BJ, Alzahrani F, Khan MI, Khan SU, Appl. Math. Comput., 419, 126883 (2021)
Shen Z, Wang F, Wang Z, Li J, Renew. Sust. Energ. Rev., 141, 110783 (2021)
Pak BC, Cho YI, Exp. Heat Transf., 11(2), 151 (1998)
Dezfulizadeh A, Aghaei A, Joshaghani AH, Najafizadeh MM, Powder Technol., 389, 215 (2021)
Hosseini SMS, Dehaj MS, Energy, 234, 121317 (2021)
Shahsavar A, Jamei M, Karbasi M, Powder Technol., 393, 1 (2021)
Loong TT, Salleh H, Khalid A, Koten H, Case Stud. Therm. Eng., 101288 (2021)
Esfe MH, Rostamian H, Sarlak MR, J. Mol. Liq., 254, 406 (2018)
Chol SUS, Estman JA, ASME-Publications-Fed, 231, 99 (1995)
Koca HD, Doganay S, Turgut A, Tavman IH, Saidur R, Mahbubul IM, Renew. Sust. Energ. Rev., 82, 1664 (2018)
Kim SH, Choi SR, Kim D, J. Heat Transf. -Trans. ASME, 129(3), 298 (2007)
Mikkola V, Puupponen S, Granbohm H, Saari K, Ala-Nissila T, Seppälä A, Int. J. Therm. Sci., 124, 187 (2018)
Pinto RV, Fiorelli FAS, Appl. Therm. Eng., 108, 720 (2016)
Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S, Int. J. Heat Mass Transf., 117, 474 (2018)
Fuxi S, Hamedi S, Hajian M, Toghraie D, Alizadeh AA, Hekmatifar M, Sina N, Case Stud. Therm. Eng., 101293 (2021)
Yang X, Boroomandpour A, Wen S, Toghraie D, Soltani F, Powder Technol., 388, 418 (2021)
Nfawa SR, Basri AA, Masuri SU, Case Stud. Therm. Eng., 101279 (2021)
Coccia G, Tomassetti S, Di Nicola G, Renew. Sust. Energ. Rev., 151, 111573 (2021)
Tu J, Qi C, Tang Z, Tian Z, Chen L, Appl. Therm. Eng., 202, 117893 (2022)
Tang J, Qi C, Ding Z, Afrand M, Yan Y, Int. Commun. Heat Mass Transf., 127, 105492 (2021)
Tu J, Qi C, Li K, Tang Z, Powder Technol., 395, 562 (2022)
Esfe MH, Esforjani SSM, Akbari M, Karimipour A, Heat Transf. Res., 45(6), 563 (2014)
Wang Y, Qi C, Ding Z, Tu J, Zhao R, Powder Technol., 392, 570 (2021)
Esfe MH, Arani AAA, Rezaie M, Yan WM, Karimipour A, Int. Commun. Heat Mass Transf., 66, 189 (2015)
Esfe MH, Rostamian H, Rejvani M, Emami MRS, Physica E, 102, 160 (2018)
Rostamian SH, Saedodin S, Asgari SA, Salarian AH, J. Therm. Anal. Calorim., 147, 155 (2020)
Alawi OA, Sidik NAC, Xian HW, Kean TH, Kazi SN, Int. J. Heat Mass Transf., 116, 1314 (2018)
Aberoumand S, Jafarimoghaddam A, J. Taiwan Inst. Chem. Eng., 71, 315 (2017)
Esfe MH, Bahiraei M, Mahian O, Powder Technol., 338, 383 (2018)
Chiam HW, Azmi WH, Usri NA, Mamat R, Adam NM, Exp. Therm. Fluid Sci., 81, 420 (2017)
Dalkılıç AS, Açıkgöz O, Küçükyıldırım BO, Eker AA, Lüleci B, Jumpholkul C, Wongwises S, Int. Commun. Heat Mass Transf., 97, 30 (2018)
Esfe MH, Appl. Therm. Eng., 126, 559 (2017)
Abdulrahman A, Mater. Today: Proc., 42, 771 (2021)
Chu YM, Ibrahim M, Saeed T, Berrouk AS, Algehyne EA, Kalbasi R, J. Mol. Liq., 333, 115969 (2021)
Cao Y, Khan A, Abdi A, Ghadiri M, Arab. J. Chem., 14(7), 103204 (2021)
Ji W, Yang L, Chen Z, Mao M, Huang JN, Powder Technol., 388, 212 (2021)
Esfe MH, Sarlak MR, J. Mol. Liq., 242, 326 (2017)
Esfe MH, Esfandeh S, Niazi S, J. Mol. Liq., 288, 111020 (2019)
Eriksson L, Johansson E, Kettaneh-Wold N, Wikström C, Wold S, Design of experiments, Principles and applications, Learn ways AB, Stockholm (2000).
Myers RH, Montgomery DC, Anderson-Cook CM, Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons (2016).
Ghafarzadeh M, Abedini R, Rajabi R, J. Clean Prod., 150, 361 (2017)
Mäkelä M, Energy Conv. Manag., 151, 630 (2017)
Zhao TH, Khan MI, Chu YM, Math. Methods Appl. Sci., In press (2021)
Zhao TH, Castillo O, Jahanshahi H, Yusuf A, Alassafi MO, Alsaadi FE, Chu YM, Appl. Comput. Math., 20(1), 160 (2021)
Wang FZ, Khan MN, Ahmad I, Ahmad H, Abu-Zinadah H, Chu YM, Fractals, 30(2), 224005 (2022)
Nazeer M, Hussain F, Khan MI, Asad-ur-Rehman, El-Zahar ER, Chu YM, Malik MY, Appl. Math. Comput., 420, 126868 (2021)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로