Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 11, 2022
Accepted May 10, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Optimization of Pt loading on the counter electrode for efficient and bifacial dye-sensitized solar cells with polymer gel electrolyte
Department of Chemical Engineering,, Dankook University, Yongin 16890, Korea
Korean Journal of Chemical Engineering, October 2022, 39(10), 2817-2825(9), 10.1007/s11814-022-1170-8
Download PDF
Abstract
We examined the optimized conditions for preparing Pt/FTO glass counter electrodes (CEs) for the fabrication of highly efficient, bifacial, and quasi-solid-state dye-sensitized solar cells (QSS-DSSCs). The Pt/FTO glass CEs were prepared via thermal decomposition, and the molar concentration of the employed Pt precursor solution was controlled in the range of 5-40mM. Impedance analysis and Tafel polarization curves revealed that electrocatalytic activity was optimized at 20mM, whereas specular transmittance gradually decreased with increasing concentration of the precursor solution. When the CEs were applied to bifacial QSS-DSSCs employing a polymer gel electrolyte, the power conversion efficiency (PCE) was maximized at 20mM under front illumination because the condition resulted in the highest electrocatalytic activity. Meanwhile, PCE under back illumination was optimized at 10 mM because of the larger incident light loss by the CEs at higher concentrations. Because the influence of the inferior performance under back illumination was more dominant in bifacial operations, the average PCE under front and back illumination was optimized at 10 mM.
Keywords
References
Das UK, Tey KS, Seyedmahmoudian M, Mekhilef S, Idris MYI, Van Deventer W, Horan B, Stojcevski A, Renew. Sust. Energ. Rev., 81, 912 (2018)
Cheng Y, Yang S, Hsu C, Chem. Rev., 109, 5868 (2009)
Yuan J, Zhang Y, Zhou L, Zhang G, Yip H, Lau T, Lu X, Zhu C, Peng H, Johnson PA, Joule, 3, 1140 (2019)
Aernouts T, Vanlaeke P, Geens W, Poortmans J, Heremans P, Borghs S, Mertens R, Andriessen R, Leenders L, Thin Solid Films, 451, 22 (2004)
O'regan B, Grätzel M, Nature, 353, 737 (1991)
Hao S, Wu J, Huang Y, Lin J, Sol. Energy, 80, 209 (2006)
Han L, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S, Yang X, Yanagida M, Energy Environ. Sci., 5, 6057 (2012)
Yang J, Kim J, Yu JH, Ahn T, Lee H, Choi T, Kim Y, Joo J, Ko MJ, Hyeon T, Phys. Chem. Chem. Phys., 15, 20517 (2013)
Li W, Pan Z, Zhong X, J. Mater. Chem. A, 3, 1649 (2015)
Kim J, Yang J, Yu JH, Baek W, Lee C, Son HJ, Hyeon T, Ko MJ, ACS Nano, 9, 11286 (2015)
Kamat PV, J. Phys. Chem. C, 112, 18737 (2008)
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Science, 345, 295 (2014)
Yin W, Shi T, Yan Y, Appl. Phys. Lett., 104, 063903 (2014)
Jošt M, Köhnen E, Morales-Vilches AB, Lipovšek B, Jäger K, Macco B, Al-Ashouri A, Krč J, Korte L, Rech B, Energy Environ. Sci., 11, 3511 (2018)
Kumar D, Wong K, Mater. Today Energy, 5, 243 (2017)
Margulis GY, Christoforo MG, Lam D, Beiley ZM, Bowring AR, Bailie CD, Salleo A, McGehee MD, Adv. Energy Mater., 3, 1657 (2013)
Otaka H, Kira M, Yano K, Ito S, Mitekura H, Kawata T, Matsui F, J. Photochem. Photobiol. A-Chem., 164, 67 (2004)
Kawata K, Tamaki K, Kawaraya M, JPST, 28, 415 (2015)
Naim W, Novelli V, Nikolinakos I, Barbero N, Dzeba I, Grifoni F, Ren Y, Alnasser T, Velardo A, Borrelli R, JACS Au., 1, 409 (2021)
Hwang D, Nam JE, Jo HJ, Sung S, J. Power Sources, 361, 87 (2017)
Tai Q, Chen B, Guo F, Xu S, Hu H, Sebo B, Zhao X, ACS Nano., 5, 3795 (2011)
Xu S, Luo Y, Liu G, Qiao G, Zhong W, Xiao Z, Luo Y, Ou H, Electrochim. Acta, 156, 20 (2015)
Hübner A, Aberle AG, Hezel R, Appl. Phys. Lett., 70, 1008 (1997)
Ito S, Zakeeruddin SM, Comte P, Liska P, Kuang D, Gratzel M, Nat. Photonics, 2, 693 (2008)
Wu J, Tang Z, Huang Y, Huang M, Yu H, Lin J, J. Power Sources, 257, 84 (2014)
Song MY, Chaudhari KN, Park J, Yang D, Kim JH, Kim M, Lim K, Ko J, Yu J, Appl. Energy, 100, 132 (2012)
Fang X, Ma T, Guan G, Akiyama M, Kida T, Abe E, J. Electroanal. Chem., 570, 257 (2004)
Kubo W, Murakoshi K, Kitamura T, Yoshida S, Haruki M, Hanabusa K, Shirai H, Wada Y, Yanagida S, J. Phys. Chem. B, 105, 12809 (2001)
Lan Z, Wu J, Lin J, Huang M, Yin S, Sato T, Electrochim. Acta, 52, 6673 (2007)
Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR, J. Am. Chem. Soc., 125, 475 (2003)
Xia J, Masaki N, Lira-Cantu M, Kim Y, Jiang K, Yanagida S, J. Am. Chem. Soc., 130, 1258 (2008)
Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H, Chem. Rev., 110, 6595 (2010)
Stergiopoulos T, Arabatzis IM, Katsaros G, Falaras P, Nano Lett., 2, 1259 (2002)
Devrim Y, Arıca ED, Int. J. Hydrog. Energy, 44, 18951 (2019)
Yang X, Zheng J, Zhen M, Meng X, Jiang F, Wang T, Shu C, Jiang L, Wang C, Appl. Catal. B: Environ., 121, 57 (2012)
Rosseler O, Ulhaq-Bouillet C, Bonnefont A, Pronkin S, Savinova E, Louvet A, Keller V, Keller N, Appl. Catal. B: Environ., 166, 381 (2015)
Xue X, Lu T, Liu C, Xu W, Su Y, Lv Y, Xing W, Electrochim. Acta, 50, 3470 (2005)
Casella IG, Desimoni E, Electroanalysis, 8, 447 (1996)
Kumar PN, Kolay A, Kumar SK, Patra P, Aphale A, Srivastava AK, Deepa M, ACS Appl. Mater. Interfaces, 8, 27688 (2016)
Roy-Mayhew JD, Bozym DJ, Punckt C, Aksay IA, ACS Nano, 4, 6203 (2010)
Kim J, Lee KJ, Kang SH, Shin J, Sung Y, J. Phys. Chem. C, 115, 19979 (2011)
Jaafar H, Ain MF, Ahmad ZA, Opt. Quant. Electron., 52, 221 (2020)
Hsieh TY, Wei TC, Zhai P, Feng SP, Ikegami M, Miyasaka T, J. Power Sources, 283, 351 (2015)
Wu M, Lin X, Wang Y, Wang L, Guo W, Qi D, Peng X, Hagfeldt A, Grätzel M, Ma T, J. Am. Chem. Soc., 134, 3419 (2012)
Wang YC, Wang DY, Jiang YT, Chen HA, Chen CC, Ho KC, Chou HL, Chen CW, Angew. Chem.-Int. Edit., 52, 6694 (2013)
Reference Solar Spectral Irradiance: Air Mass 1.5; American Society for Testing and Materials: West Conshohocken, PA (2021)
Wang M, Chamberland N, Breau L, Moser JE, Humphry-Baker R, Marsan B, Zakeeruddin SM, Grätzel M, Nat. Chem., 2, 385 (2010)
Cheng Y, Yang S, Hsu C, Chem. Rev., 109, 5868 (2009)
Yuan J, Zhang Y, Zhou L, Zhang G, Yip H, Lau T, Lu X, Zhu C, Peng H, Johnson PA, Joule, 3, 1140 (2019)
Aernouts T, Vanlaeke P, Geens W, Poortmans J, Heremans P, Borghs S, Mertens R, Andriessen R, Leenders L, Thin Solid Films, 451, 22 (2004)
O'regan B, Grätzel M, Nature, 353, 737 (1991)
Hao S, Wu J, Huang Y, Lin J, Sol. Energy, 80, 209 (2006)
Han L, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S, Yang X, Yanagida M, Energy Environ. Sci., 5, 6057 (2012)
Yang J, Kim J, Yu JH, Ahn T, Lee H, Choi T, Kim Y, Joo J, Ko MJ, Hyeon T, Phys. Chem. Chem. Phys., 15, 20517 (2013)
Li W, Pan Z, Zhong X, J. Mater. Chem. A, 3, 1649 (2015)
Kim J, Yang J, Yu JH, Baek W, Lee C, Son HJ, Hyeon T, Ko MJ, ACS Nano, 9, 11286 (2015)
Kamat PV, J. Phys. Chem. C, 112, 18737 (2008)
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Science, 345, 295 (2014)
Yin W, Shi T, Yan Y, Appl. Phys. Lett., 104, 063903 (2014)
Jošt M, Köhnen E, Morales-Vilches AB, Lipovšek B, Jäger K, Macco B, Al-Ashouri A, Krč J, Korte L, Rech B, Energy Environ. Sci., 11, 3511 (2018)
Kumar D, Wong K, Mater. Today Energy, 5, 243 (2017)
Margulis GY, Christoforo MG, Lam D, Beiley ZM, Bowring AR, Bailie CD, Salleo A, McGehee MD, Adv. Energy Mater., 3, 1657 (2013)
Otaka H, Kira M, Yano K, Ito S, Mitekura H, Kawata T, Matsui F, J. Photochem. Photobiol. A-Chem., 164, 67 (2004)
Kawata K, Tamaki K, Kawaraya M, JPST, 28, 415 (2015)
Naim W, Novelli V, Nikolinakos I, Barbero N, Dzeba I, Grifoni F, Ren Y, Alnasser T, Velardo A, Borrelli R, JACS Au., 1, 409 (2021)
Hwang D, Nam JE, Jo HJ, Sung S, J. Power Sources, 361, 87 (2017)
Tai Q, Chen B, Guo F, Xu S, Hu H, Sebo B, Zhao X, ACS Nano., 5, 3795 (2011)
Xu S, Luo Y, Liu G, Qiao G, Zhong W, Xiao Z, Luo Y, Ou H, Electrochim. Acta, 156, 20 (2015)
Hübner A, Aberle AG, Hezel R, Appl. Phys. Lett., 70, 1008 (1997)
Ito S, Zakeeruddin SM, Comte P, Liska P, Kuang D, Gratzel M, Nat. Photonics, 2, 693 (2008)
Wu J, Tang Z, Huang Y, Huang M, Yu H, Lin J, J. Power Sources, 257, 84 (2014)
Song MY, Chaudhari KN, Park J, Yang D, Kim JH, Kim M, Lim K, Ko J, Yu J, Appl. Energy, 100, 132 (2012)
Fang X, Ma T, Guan G, Akiyama M, Kida T, Abe E, J. Electroanal. Chem., 570, 257 (2004)
Kubo W, Murakoshi K, Kitamura T, Yoshida S, Haruki M, Hanabusa K, Shirai H, Wada Y, Yanagida S, J. Phys. Chem. B, 105, 12809 (2001)
Lan Z, Wu J, Lin J, Huang M, Yin S, Sato T, Electrochim. Acta, 52, 6673 (2007)
Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR, J. Am. Chem. Soc., 125, 475 (2003)
Xia J, Masaki N, Lira-Cantu M, Kim Y, Jiang K, Yanagida S, J. Am. Chem. Soc., 130, 1258 (2008)
Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H, Chem. Rev., 110, 6595 (2010)
Stergiopoulos T, Arabatzis IM, Katsaros G, Falaras P, Nano Lett., 2, 1259 (2002)
Devrim Y, Arıca ED, Int. J. Hydrog. Energy, 44, 18951 (2019)
Yang X, Zheng J, Zhen M, Meng X, Jiang F, Wang T, Shu C, Jiang L, Wang C, Appl. Catal. B: Environ., 121, 57 (2012)
Rosseler O, Ulhaq-Bouillet C, Bonnefont A, Pronkin S, Savinova E, Louvet A, Keller V, Keller N, Appl. Catal. B: Environ., 166, 381 (2015)
Xue X, Lu T, Liu C, Xu W, Su Y, Lv Y, Xing W, Electrochim. Acta, 50, 3470 (2005)
Casella IG, Desimoni E, Electroanalysis, 8, 447 (1996)
Kumar PN, Kolay A, Kumar SK, Patra P, Aphale A, Srivastava AK, Deepa M, ACS Appl. Mater. Interfaces, 8, 27688 (2016)
Roy-Mayhew JD, Bozym DJ, Punckt C, Aksay IA, ACS Nano, 4, 6203 (2010)
Kim J, Lee KJ, Kang SH, Shin J, Sung Y, J. Phys. Chem. C, 115, 19979 (2011)
Jaafar H, Ain MF, Ahmad ZA, Opt. Quant. Electron., 52, 221 (2020)
Hsieh TY, Wei TC, Zhai P, Feng SP, Ikegami M, Miyasaka T, J. Power Sources, 283, 351 (2015)
Wu M, Lin X, Wang Y, Wang L, Guo W, Qi D, Peng X, Hagfeldt A, Grätzel M, Ma T, J. Am. Chem. Soc., 134, 3419 (2012)
Wang YC, Wang DY, Jiang YT, Chen HA, Chen CC, Ho KC, Chou HL, Chen CW, Angew. Chem.-Int. Edit., 52, 6694 (2013)
Reference Solar Spectral Irradiance: Air Mass 1.5; American Society for Testing and Materials: West Conshohocken, PA (2021)
Wang M, Chamberland N, Breau L, Moser JE, Humphry-Baker R, Marsan B, Zakeeruddin SM, Grätzel M, Nat. Chem., 2, 385 (2010)