Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 28, 2022
Accepted May 18, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Prediction of defluidization behavior using particle apparent viscosity
1Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China 2Collaborative Innovation Center of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China 3Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai 9808579, Japan 4State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
anzhuoqing@163.com
Korean Journal of Chemical Engineering, October 2022, 39(10), 2875-2882(8), 10.1007/s11814-022-1183-3
Download PDF
Abstract
The commercial utilization of fluidized beds is usually limited by particle agglomeration and subsequent defluidization. In this paper, a new mathematical model based on force balance is proposed to predict the defluidization behavior of particles in fluidized beds. In this model, the cohesive forces between particles are characterized using particle apparent viscosity and the separating force is mainly determined by the drag force. When the cohesion force was equal to the separating force at different fluidization condition, the minimum fluidization velocity and defluidization temperature were obtained by the model. Further, the fluidization behavior of copper particles including the minimum fluidization velocity and the temperature under which defluidization occurred was examined in a laboratory’s fluidized bed reactor. Compared with the experimental data, the results predicted by the model represent good agreement.
Keywords
References
Karimi F, Haghshenasfard M, Sotudeh-Gharebagh R, Zarghami R, Mostoufi N, Adv. Powder Technol., 29, 3145 (2018)
Lee JR, Kim YH, Won YS, Korean J. Chem. Eng., 38, 1791 (2021)
Mishra I, Liu P, Shetty A, Hrenya M, Chem. Eng. Sci., 214, 115422 (2020)
Zhou Y, Shi Q, Huang Z, Wang J, Yang Y, Chem. Eng. J., 330, 840 (2017)
Li J, Kong J, He S, Zhu Q, Li H, Chem. Eng. Sci., 177, 455 (2018)
Komatina M, Gudenau HW, J. Metall., 10, 309 (2004)
Zhong Y, Wang Z, Guo Z, Tang Q, Powder Technol., 249, 175 (2013)
Lu H, Cao J, Macri D, Guo X, Liu H, Gong X, Powder Technol., 380, 106 (2021)
Skrifvars BJ, Hupa M, Backman R, Hiltunen M, Fuel, 73, 171 (1994)
Lin CL, Wey MY, Lu CY, Powder Technol., 161, 150 (2006)
Valverde JM, Castellanos A, Chem. Eng. J., 140, 296 (2008)
Seville JPK, Silomon-Pflug H, Knight PC, Powder Technol., 97, 160 (1998)
Knight PC, Seville JPK, Kamiya H, Horio M, Chem. Eng. Sci., 55, 4783 (2000)
Zhong Y, Wang Z, Guo Z, Tang Q, Powder Technol., 230, 225 (2012)
Gong X, Zhang B, Wang Z, Guo Z, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 45, 2050 (2014)
He J, Zhao Y, He Y, Walzel P, Schaldach G, Duan C, Powder Technol., 241, 204 (2013)
Mikami T, Kamiya H, Horio M, Powder Technol., 89, 231 (1996)
Seville JPK, Willett CD, Knight PC, Powder Technol., 113, 261 (2000)
Hinch EJ, J. Fluid Mech., 686, 1 (2011)
Gibilaro LG, Gallucci K, Di Felice R, Pagliai P, Chem. Eng. Sci., 62, 294 (2007)
Lei C, Zhu Q, Li H, Chem. Eng. Sci., 118, 50 (2014)
Lin CL, Wey MY, You SD, Powder Technol., 126, 297 (2002)
Wang XS, Rhodes MJ, Chem. Eng. Sci., 59, 215 (2004)
Yamazaki R, Han NS, Sun ZF, Jimbo G, Powder Technol., 84, 15 (1995)
Osborne MFM, Kolloid-Zeitschrift und Zeitschrift für Polymere, 224, 150 (1968)
Tardos G, Mazzone D, Pfeffer R, Can. J. Chem. Eng., 62, 884 (1984)
Zhang Y, An Z, Bai H, Li Q, Guo Z, Powder Technol., 284, 279 (2015)
Ergun S, Chem. Eng. Prog., 48, 89 (1952)
Kuo JH, Shih K, Lin CL, Wey MY, Powder Technol., 224, 395 (2012)
Turton R, Levenspiel O, Powder Technol., 47, 83 (1986)
Komoda Y, Nakashima K, Suzuki H, Usui H, Adv. Powder Technol., 17, 333 (2006)
Torrez C, André C, Chem. Eng. Technol., 21, 599 (1998)
Biswas PK, Godiwalla KM, Sanyal D, Dev SC, Mater. Des., 23, 511 (2002)
Moutinho HR, Jiang CS, To B, Perkins C, Muller M, Al-Jassim MM, Simpson L, Energ. Mat. Sol. C., 172, 145 (2017)
Sandeep CS, Senetakis K, Materials, 11, 217 (2018)
Katainen J, Paajanen M, Ahtola E, Pore V, Lahtinen J, J. Colloid Interface Sci., 304, 524 (2006)
Ata A, Rabinovich YI, Singh RK, J. Adhes. Sci. Technol., 16, 337 (2002)
Noda K, Uchida S, Makino T, Kamo H, Powder Technol., 46, 149 (1986)
Gidaspow D, Multiphase flow and fluidization: continuum and kinetic theory descriptions, Academic Press (1994).
Wen CY, Yu YH, AIChE J., 12, 610 (1966)
Zhou Y, Zhu J, Chem. Eng. J., 1, 402 (2020)
Anantharaman A, Cocco RA, Chew JW, Powder Technol., 454, 323 (2018)
Kai T, Kamei T, Takahashi T, AIChE J., 44, 491 (1998)
Lee JR, Kim YH, Won YS, Korean J. Chem. Eng., 38, 1791 (2021)
Mishra I, Liu P, Shetty A, Hrenya M, Chem. Eng. Sci., 214, 115422 (2020)
Zhou Y, Shi Q, Huang Z, Wang J, Yang Y, Chem. Eng. J., 330, 840 (2017)
Li J, Kong J, He S, Zhu Q, Li H, Chem. Eng. Sci., 177, 455 (2018)
Komatina M, Gudenau HW, J. Metall., 10, 309 (2004)
Zhong Y, Wang Z, Guo Z, Tang Q, Powder Technol., 249, 175 (2013)
Lu H, Cao J, Macri D, Guo X, Liu H, Gong X, Powder Technol., 380, 106 (2021)
Skrifvars BJ, Hupa M, Backman R, Hiltunen M, Fuel, 73, 171 (1994)
Lin CL, Wey MY, Lu CY, Powder Technol., 161, 150 (2006)
Valverde JM, Castellanos A, Chem. Eng. J., 140, 296 (2008)
Seville JPK, Silomon-Pflug H, Knight PC, Powder Technol., 97, 160 (1998)
Knight PC, Seville JPK, Kamiya H, Horio M, Chem. Eng. Sci., 55, 4783 (2000)
Zhong Y, Wang Z, Guo Z, Tang Q, Powder Technol., 230, 225 (2012)
Gong X, Zhang B, Wang Z, Guo Z, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 45, 2050 (2014)
He J, Zhao Y, He Y, Walzel P, Schaldach G, Duan C, Powder Technol., 241, 204 (2013)
Mikami T, Kamiya H, Horio M, Powder Technol., 89, 231 (1996)
Seville JPK, Willett CD, Knight PC, Powder Technol., 113, 261 (2000)
Hinch EJ, J. Fluid Mech., 686, 1 (2011)
Gibilaro LG, Gallucci K, Di Felice R, Pagliai P, Chem. Eng. Sci., 62, 294 (2007)
Lei C, Zhu Q, Li H, Chem. Eng. Sci., 118, 50 (2014)
Lin CL, Wey MY, You SD, Powder Technol., 126, 297 (2002)
Wang XS, Rhodes MJ, Chem. Eng. Sci., 59, 215 (2004)
Yamazaki R, Han NS, Sun ZF, Jimbo G, Powder Technol., 84, 15 (1995)
Osborne MFM, Kolloid-Zeitschrift und Zeitschrift für Polymere, 224, 150 (1968)
Tardos G, Mazzone D, Pfeffer R, Can. J. Chem. Eng., 62, 884 (1984)
Zhang Y, An Z, Bai H, Li Q, Guo Z, Powder Technol., 284, 279 (2015)
Ergun S, Chem. Eng. Prog., 48, 89 (1952)
Kuo JH, Shih K, Lin CL, Wey MY, Powder Technol., 224, 395 (2012)
Turton R, Levenspiel O, Powder Technol., 47, 83 (1986)
Komoda Y, Nakashima K, Suzuki H, Usui H, Adv. Powder Technol., 17, 333 (2006)
Torrez C, André C, Chem. Eng. Technol., 21, 599 (1998)
Biswas PK, Godiwalla KM, Sanyal D, Dev SC, Mater. Des., 23, 511 (2002)
Moutinho HR, Jiang CS, To B, Perkins C, Muller M, Al-Jassim MM, Simpson L, Energ. Mat. Sol. C., 172, 145 (2017)
Sandeep CS, Senetakis K, Materials, 11, 217 (2018)
Katainen J, Paajanen M, Ahtola E, Pore V, Lahtinen J, J. Colloid Interface Sci., 304, 524 (2006)
Ata A, Rabinovich YI, Singh RK, J. Adhes. Sci. Technol., 16, 337 (2002)
Noda K, Uchida S, Makino T, Kamo H, Powder Technol., 46, 149 (1986)
Gidaspow D, Multiphase flow and fluidization: continuum and kinetic theory descriptions, Academic Press (1994).
Wen CY, Yu YH, AIChE J., 12, 610 (1966)
Zhou Y, Zhu J, Chem. Eng. J., 1, 402 (2020)
Anantharaman A, Cocco RA, Chew JW, Powder Technol., 454, 323 (2018)
Kai T, Kamei T, Takahashi T, AIChE J., 44, 491 (1998)