ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 27, 2022
Accepted July 4, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Fluid dynamics, velocity profile and average cycle time in different configurations of the modified mechanically stirred spouted bed

Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz - Km 235, P. O. Box 676 13565-905, São Carlos, SP, Brazil
joaopedroaab@gmail.com
Korean Journal of Chemical Engineering, November 2022, 39(11), 2896-2906(11), 10.1007/s11814-022-1225-x
downloadDownload PDF

Abstract

We analyzed modified spouted bed configurations incorporating three different types of mechanical stirrer, in comparison to a conventional spouted bed. Straight-blade, inclined-blade, and helical screw agitators were used with different types of inert particles. The behavior of the fluid dynamic curves was qualitatively similar for the systems with agitators and the conventional design, except for the screw-type agitator. For the straight-blade and inclinedblade agitators, increase of the rotation speed had a positive effect on the fluid dynamic parameters, reducing the air flow and the pressure drop in the bed. The effects of rotation speed and blade inclination on the fluid dynamics were minimized at 240 rpm, although the mass of particles could influence these parameters. The inclined-blade stirrer performed the best, reducing airflow between 40 and 66% compared to the conventional spouted bed. For the screw-type stirrer, the reduction was around 27% in some of the experiments. The rotation speed of the stirrer and the air flow to agitate the bed affect the average cycle time of the process, with a stronger effect on the rotation speed. Overall, the use of the stirrers in the bed provided significant improvement, with reduction of both the air flow, the pressure drop and average cycle time, as well as greater stability of the bed.

References

Mathur KB, Gishler PE, Spouted bed, New York (1974).
Freire JT, Ferreira MC, Freire FB, Nascimento BS, Dry. Technol., 30, 330 (2012)
Passos ML, Massarani G, Freire JT, Mujumdar AS, Dry. Technol., 15, 605 (1997)
Rocha APT, Lisboa HM, Alsina OLS, Silva OS, Powder Technol., 336, 85 (2018)
Liu M, Chen Z, Chen M, Shao Y, Liu B, Tang Y, Nucl. Eng. Des., 357, 110413 (2020)
Wolff MFH, Salikov V, Antonyuk S, Heinrich S, Schneider GA, Compos. Sci. Technol., 90, 154 (2014)
Sousa LM, Ferreira MC, Chem. Eng. Res. Des., 160, 31 (2020)
Yang S, Dong R, Du Y, Wang S, Wang H, Energy, 214, 118839 (2021)
Martins R, Britto-Costa PH, Ruotolo LAM, Environ. Technol., 33, 1123 (2012)
Bilbao J, Olazar M, Romero A, Arandes JM, Ind. Eng. Chem. Res., 26, 1297 (1987)
Azizi K, Moraveji MK, Arregi A, Amutio M, Lopez G, Olazar M, Bioresour. Technol., 311, 123561 (2020)
Barcelos KM, Almeida PS, Araujo MS, Xavier TP, Santos KG, Bacelos MS, Lira TS, Biomass Bioenerg., 138, 105592 (2020)
de Medeiros FGM, Machado IP, Dantas TNP, Dantas SCM, de Alsina OLS, de Medeiros MFD, a Case Study on Drying of Graviola (Annona muricata), de LA Delgado B, J. (Ed.), Springer (2021).
Barros JPAA, Ferreira MC, Freire JT, Ferreira MC, Dry. Technol., 38, 1709 (2019)
Brito RC, Zacharias MB, Forti VA, Freire JT, Dry. Technol., 39, 820 (2020)
Batista JNM, Santos DA, Béttega R, Particuology, 54, 91 (2021)
Souza CRF, Oliveira WP, Braz. J. Chem. Eng., 22, 239 (2005)
Barret N, Fane A, Drying Liquid Materials in a Spouted Bed (1990).
Szentmarjay T, Pallai E, Tóth J, Mechanical spouting, Spouted Spouted-Fluid Beds Fundam. Appl., Cambridge University Press, New York, 297 (2011).
Passos ML, Mujumdar AS, Vijaya G, Raghavan VGS, Dry. Technol., 7, 663 (1989)
Puspasari I, Zainal M, Talib M, Ramli W, Daud W, Tasirin SM, Puspasari I, Zainal M, Talib M, Ramli W, Daud W, Dry. Technol., 30, 619 (2012)
Bait RG, Pawar SB, Banerjee AN, Mujumdar AS, Thorat BN, Dry. Technol., 29, 808 (2011)
Reyes A, Díaz G, Marquardt FH, Dry. Technol., 19, 2235 (2001)
Reed III T, Fenske M, Ind. Eng. Chem., 47, 275 (1955)
Olazar M, José MJS, Aguayo AT, Arandes JM, Bilbao J, Ind. Eng. Chem. Res., 31, 1784 (1992)
Olazar M, José MJS, Aguado R, Gaisán B, Bilbao J, Ind. Eng. Chem. Res., 38, 4120 (1999)
Estiati I, Tellabide M, Saldarriaga JF, Altzibar H, Olazar M, Powder Technol., 356, 193 (2019)
Karimi M, Vaferi B, Hosseini SH, Olazar M, Rashidi S, Particuology, 55, 179 (2021)
Saldarriaga JF, Estiati I, Atxutegi A, Aguado R, Bilbao J, Olazar M, Ind. Eng. Chem. Res., 58, 1932 (2019)
Hosseini SH, Rezaei MJ, Bag-Mohammadi M, Altzibar H, Olazar M, Chem. Eng. Res. Des., 138, 331 (2018)
Reyes A, Vidal I, Dry. Technol., 18, 341 (2000)
de A Barros JPA, Brito RC, Freire FB, Freire JT, Ind. Eng. Chem. Res., 59, 16396 (2020)
Szentmarjay T, Pallai E, Dry. Technol., 7, 523 (1989)
Németh J, Pallai E, Aradi E, Can. J. Chem. Eng., 61, 419 (1983)
Szentmarjay T, Szalay A, Pallai I, Hungarian J. Ind. Chem. Veszprém., 20, 219 (1992)
Németh J, Pallai E, Péter M, Toros R, Can. J. Chem. Eng., 61, 406 (1983)
Kudra T, Pallai E, Bartczaki Z, Peter M, Dry. Technol., 7, 583 (2007)
Sousa RC, Ferreira MC, Altzibar H, Freire FB, Freire JT, Particuology, 42, 176 (2019)
Brito RC, Sousa RC, Béttega RF, Freire FB, Freire JT, Chem. Eng. Process., 130, 1 (2018)
Vieira GNA, Freire FB, Freire JT, Dry. Technol., 33, 1920 (2015)
Geldart D, Powder Technol., 7, 285 (1973)
Mathur KB, Epstein N, Spouted beds, Academic Press, New York (1974).
Mamuro T, Hattori H, J. Chem. Eng. Jpn., 1, 1 (1968)
Altzibar H, Lopez G, Bilbao J, Olazar M, Can. J. Chem. Eng., 91, 1865 (2013)
Estiati I, Altzibar H, Tellabide M, Olazar M, Powder Technol., 316, 87 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로