Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 19, 2022
Accepted July 19, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Techno-economic analysis of the integrated DME production process: Effects of different separation trains and recycling strategies
1Department of Energy Systems Research, Ajou University, Suwon 16499, Korea 2School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea 3Research Institute of Industrial Science & Technology (RIST), Pohang 37673, Korea 4Department of Chemical Engineering, Ajou University, Suwon 16499, Korea
gookheekim@rist.re.kr
Korean Journal of Chemical Engineering, November 2022, 39(11), 2925-2934(10), 10.1007/s11814-022-1235-8
Download PDF
Abstract
Integrated process models were developed to produce dimethyl ether (DME) from the byproduct gas of the steelmaking process. Two different separation trains (the use of flash drums to separate light gases followed by two columns to separate CO2 and DME vs. the application of an absorber to separate light gas and CO2 under mild temperatures), and two different recycling strategies (recycling with and without further separation of hydrogen by a membrane) were considered. Detailed kinetic reactions for methanol (MeOH) synthesis from syngas and the dehydration of MeOH to DME were used in the reactor model, which helped predict the compositions of the reactor effluent under various conditions and determine the operating conditions of the separation trains. Both separation trains with recycled stream increased the DME production rate and overall CO2 conversion, while the sizes of the reactor and separators, and the utility costs of refrigeration, absorbent recovery, recycled stream compression, etc. were significantly increased. The tradeoffs between different cases were quantitatively analyzed by techno-economic and sensitivity analyses. The results showed that the use of the absorber with the recycling of hydrogen is the most feasible process for the economic production of DME with high CO2 reduction.
Keywords
References
Masudi A, Jusoh NWC, Muraza O, J. Clean Prod., 277, 124024 (2020)
Park SH, Lee CS, Energy Conv. Manag., 86, 848 (2014)
Chen WH, Hsu CL, Wang XD, Energy, 109, 326 (2016)
Park H, Woo Y, Jung HS, Kim G, Bae JW, Park MJ, J. Clean Prod., 326, 129367 (2021)
Azizi Z, Rezaeimanesh M, Tohidian T, Rahimpour MR, Chem. Eng. Process., 82, 150 (2014)
Leonzio G, J. CO2 Util., 27, 326 (2018)
Chung J, Cho W, Baek Y, Lee CH, Trans. Korean Hydrogen New Energy Soc., 23, 559 (2012)
Zhang Y, Zhang S, Benson T, Fuel Process. Technol., 131, 7 (2015)
Clausen LR, Elmegaard B, Houbak N, Energy, 35, 4831 (2010)
Mevawala C, Jiang Y, Bhattacharyya D, Appl. Energy, 238, 119 (2019)
Park N, Park MJ, Lee YJ, Ha KS, Jun KW, Fuel Process. Technol., 125, 139 (2014)
Ng KL, Chadwick D, Toseland BA, Chem. Eng. Sci., 54, 3587 (1999)
Kwak GJ, Kim GU, Lee YJ, Kang SC, KOR. Patent, KR102316885B1 (2021).
Mevawala C, Jiang Y, Bhattacharyya D, Appl. Energy, 204, 163 (2017)
Douglas JM, Conceptual design of chemical processes, McGraw- Hill, New York (1988).
Seider WD, Seader JD, Lewin DR, Product & process design principles: synthesis, analysis and evaluation, 3rd edn. John Wiley & Sons, New Jersey (2009).
Walas SM, Chemical process equipment: selection and design, Butterworths, Boston (1988).
Peters MS, Timmerhaus KD, West RE, Plant design and economics for chemical engineers, McGraw-Hill, New York (2003).
Kim S, Kim Y, Oh SY, Park MJ, Lee WB, J. Nat. Gas Sci. Eng., 96, 104308 (2021)
Ulrich GD, Vasudevan PT, Chem. Eng., 113, 66 (2006)
Luyben WL, Comput. Chem. Eng., 103, 144 (2017)
Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Analysis, synthesis and design of chemical processes, Prentice Hall, New Jersey (2008).
Park SH, Lee CS, Energy Conv. Manag., 86, 848 (2014)
Chen WH, Hsu CL, Wang XD, Energy, 109, 326 (2016)
Park H, Woo Y, Jung HS, Kim G, Bae JW, Park MJ, J. Clean Prod., 326, 129367 (2021)
Azizi Z, Rezaeimanesh M, Tohidian T, Rahimpour MR, Chem. Eng. Process., 82, 150 (2014)
Leonzio G, J. CO2 Util., 27, 326 (2018)
Chung J, Cho W, Baek Y, Lee CH, Trans. Korean Hydrogen New Energy Soc., 23, 559 (2012)
Zhang Y, Zhang S, Benson T, Fuel Process. Technol., 131, 7 (2015)
Clausen LR, Elmegaard B, Houbak N, Energy, 35, 4831 (2010)
Mevawala C, Jiang Y, Bhattacharyya D, Appl. Energy, 238, 119 (2019)
Park N, Park MJ, Lee YJ, Ha KS, Jun KW, Fuel Process. Technol., 125, 139 (2014)
Ng KL, Chadwick D, Toseland BA, Chem. Eng. Sci., 54, 3587 (1999)
Kwak GJ, Kim GU, Lee YJ, Kang SC, KOR. Patent, KR102316885B1 (2021).
Mevawala C, Jiang Y, Bhattacharyya D, Appl. Energy, 204, 163 (2017)
Douglas JM, Conceptual design of chemical processes, McGraw- Hill, New York (1988).
Seider WD, Seader JD, Lewin DR, Product & process design principles: synthesis, analysis and evaluation, 3rd edn. John Wiley & Sons, New Jersey (2009).
Walas SM, Chemical process equipment: selection and design, Butterworths, Boston (1988).
Peters MS, Timmerhaus KD, West RE, Plant design and economics for chemical engineers, McGraw-Hill, New York (2003).
Kim S, Kim Y, Oh SY, Park MJ, Lee WB, J. Nat. Gas Sci. Eng., 96, 104308 (2021)
Ulrich GD, Vasudevan PT, Chem. Eng., 113, 66 (2006)
Luyben WL, Comput. Chem. Eng., 103, 144 (2017)
Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Analysis, synthesis and design of chemical processes, Prentice Hall, New Jersey (2008).