ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 16, 2022
Accepted June 25, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

The improvement effect of surfactants on hydrogenation at condition containing water for Cu/SiO2 catalysts

1College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong, China 2College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
chenzhengtt@163.com
Korean Journal of Chemical Engineering, November 2022, 39(11), 2983-2990(8), 10.1007/s11814-022-1215-z
downloadDownload PDF

Abstract

In the industrial production, water exists inevitably into feed stocks in the form of impurity, and it can produce a negative effect in the hydrogenation reaction due to the preferential adsorption of water on active sites. Here, the surfactants (polyvinylpyrrolidone, poloxamer, polyethylene glycol and hexadecyl trimethyl ammonium bromide) are used to improve physicochemical property of Cu/SiO2 catalysts, so that Cu/SiO2 catalysts had a good hydrogenation performance at condition containing water. The appropriate addition amount of surfactants in the catalyst preparation process effectively hindered the agglomeration of copper species by steric configuration and repulsion effect between Cu2+ and positive ionizable, which brought about high copper dispersion and small particle size. Meanwhile, the decomposition of surfactants produced many pores during calcination, resulting in the increased of specific surface area and average pore diameter. These advantages provided more chances for reactants to touch active sites due to spatial restriction and the increase of the number of active sites, so that the negative effects of water can be counteracted. The conversion of Cu/SiO2 catalysts, that the surfactants was added in the catalyst preparation process, increased 60% to 200% at reaction condition containing water.

References

Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G, Renew. Sust. Energ. Rev., 71, 475 (2017)
Wei QH, Yang GH, Gao XH, Tan L, Ai PP, Zhang PP, Lu P, Yoneyama Y, Tsubaki N, Chem. Eng. J., 316, 832 (2017)
Wang Y, Liao JY, Zhang J, Wang SP, Zhao YJ, Ma XB, AIChE J., 63(7), 2839 (2017)
Wang Y, Shen YL, Zhao YJ, Lv J, Wang SP, Ma XB, ACS Catal., 5(10), 6200 (2015)
Zhu SH, Gao XQ, Zhu YL, Fan WB, Wang JG, Li YW, Catal. Sci. Technol., 5(2), 1169 (2015)
Chen Z, Zhu G, Wu Y, Sun J, Abbas M, Wang P, Chen J, ChemistrySelect, 4(48), 14063 (2019)
Chen Z, Ge H, Wang P, Sun J, Abbas M, Chen J, Mol. Catal., 488, 110919 (2020)
Zheng JZ, Duan X, Lin H, Gu Z, Fang H, Li J, Yuan Y, Nanoscale, 8(11), 5959 (2016)
Wang W, Ding M, Ma L, Yang X, Li J, Tsubaki N, Yang G, Wang T, Li X, Fuel, 164, 347 (2016)
Liu W, Qi J, Bai P, Zhang W, Xu L, Appl. Catal. B: Environ., 272, 118974 (2020)
Yue HR, Zhao YJ, Zhao S, Wang B, Ma XB, Gong JL, Nat. Commun., 4, 7 (2013)
Jiang H, Kong D, Niu Y, Wang S, Catal. Sci. Technol., 10(23), 8086 (2020)
Ma MM, Zhao XY, Wang XT, Gong FF, Yuan FL, Li ZB, Zhu YJ, Catal. Commun., 133, 5 (2020)
Zhang P, Peng X, Araki Y, Fang Y, Zeng Y, Kosol R, Yang G, Tsubaki N, Catal. Sci. Technol., 10(24), 8410 (2020)
Li L, Mao D, Yu J, Guo X, J. Power Sources, 279, 394 (2015)
Wang QQ, Chen JX, Zhang H, Wu WW, Zhang ZQ, Dong SJ, Nanoscale, 10(40), 19140 (2018)
Chen SJ, Zhang GS, Li YJ, Li JL, Lv RJ, Wang P, Chen N, Chen X, Huang YY, Yang L, Zhao DC, J. Nanosci. Nanotechnol., 20(9), 5636 (2020)
Mahmoud HR, El-Molla SA, Ibrahim MM, Renew. Energy, 160, 42 (2020)
Marcos FCF, Lin L, Betancourt LE, Senanayake SD, Rodriguez JA, Assaf JM, Giudici R, Assaf EM, J. CO2 Util., 41, 101215 (2020)
Karimi S, Meshkani F, Rezaei M, Rastegarpanah A, Fuel, 284 (2021)
Tripathi K, Singh R, Pant KK, Top. Catal., 64, 395 (2021)
Van Der Grift CJG, Wielers AFH, Jogh BPJ, Van Beunum J, De Boer M, Versluijs-Helder M, Geus JW, J. Catal., 131(1), 178 (1991)
Yuan Z, Wang L, Wang J, Xia S, Chen P, Hou Z, Zheng X, Appl. Catal. B: Environ., 101(3), 431 (2011)
Sing K, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
Donohue M, Aranovich GL, Adv. Colloid Interface Sci., 76, 137 (1998)
Chen LF, Guo PJ, Qiao MH, Yan SR, Li HX, Shen W, Xu HL, Fan KN, J. Catal., 257(1), 172 (2008)
Di W, Cheng JH, Tian SX, Li J, Chen JY, Sun Q, Appl. Catal. A: Gen., 510, 244 (2016)
Toupance T, Kermarec M, Lambert JF, Louis C, J. Phys. Chem. B, 106(9), 2277 (2002)
Huang ZW, Cui F, Kang HX, Chen J, Zhang XZ, Xia CG, Chem. Mater., 20(15), 5090 (2008)
Zhu YF, Kong X, Li XQ, Ding GQ, Zhu YL, Li YW, ACS Catal., 4(10), 3612 (2014)
Liu YT, Ding J, Sun JQ, Zhang J, Bi JC, Liu KF, Kong FH, Xiao HC, Sun YP, Chen JG, Chem. Commun., 52(28), 5030 (2016)
Huang Z, Cui F, Kang H, Chen J, Zhang X, Xia C, Chem. Mater., 20(15), 5090 (2008)
Platzman I, Brener R, Haick H, Tannenbaum R, J. Phys. Chem. C, 112(4), 1101 (2008)
Chen Z, Zhang T, Zhao X, Zhang XL, Wang D, Wei S, ChemistrySelect, 6(47), 13479 (2021)
Chen Z, Zhang J, Abbas M, Xue Y, Sun J, Liu K, Chen J, Ind. Eng. Chem. Res., 56(33), 9285 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로