Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 1, 2022
Accepted July 19, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Numerical investigation of factors affecting carbon deposition and interaction on SOFC performance over time
Department of Mechanical Engineering, the University of Guilan, P. O. Box 3756, Rasht, Iran 1Department of Mechanical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
atashkar@guilan.ac.ir
Korean Journal of Chemical Engineering, November 2022, 39(11), 3012-3020(9), 10.1007/s11814-022-1238-5
Download PDF
Abstract
One of the weaknesses of the fuel cell is the phenomenon of carbon deposition when using hydrocarbon fuel. Investigating the factors affecting the amount of carbon deposition can improve the performance of the fuel cell, efficiency and life time. A time-dependent two-dimensional numerical model based on the finite element method that considers the carbon deposition has been developed to evaluate the effect of velocity, temperature and hydrogen mole fraction as fuel constituent on the carbon deposition rate and porosity variations. The results were found in good agreement with the available published experimental and numerical data in terms of cell operating voltage, power density and carbon deposition rate. The carbon deposition rate accelerates with increasing operating temperature, inlet molar fraction of hydrogen, and decreasing the inlet velocity. Carbon deposition reduces porosity and catalyst activity. Due to the above mentioned variations, the electric power generated by the fuel cell is drastically reduced, leading to reduced electric efficiency.
Keywords
References
Andersson M, Yuan J, Sundén B, Line approach and simulation for anode-supported SOFC, ASME seventh international fuel cell science, June 8-10, Newport Beach, California, USA (2009).
Ni M, Int. J. Hydrog. Energy, 37(2), 1731 (2012)
Li PW, Chen SP, Chyu MK, J. Fuel Cell Sci. Technol., 3(2), 188 (2006)
Patcharavorachot Y, Arpornwich-anop A, Chuachuebsuk A, J. Power Sources, 177(2), 254 (2008)
Khazaee I, Rava A, Energy, 119, 235 (2017)
Xu Z, Zhang X, Li G, Xiao G, Wang JQ, Int. J. Hydrog. Energy, 42(16), 10785 (2017)
Xu H, Dang Z, Int. J. Heat Mass Transf., 109, 1252 (2017)
Borji M, Atashkari K, Ghorbani S, Nariman-Zadeh N, J. Mech. Eng. Sci., 231(4), 672 (2015)
Williams MC, Strakey JP, Surdoval WA, Wilson LC, Solid State Ion., 177(19), 2039 (2006)
McIntosh S, Gorte RJ, Chem. Rev., 104(10), 4845 (2004)
Ma T, Yan M, Zeng M, Yuan JI, Chen Q, Sundén B, Wang QW, Appl. Energy, 152, 217 (2015)
Assabumrungrata S, Laosiripojanab N, Pavarajarna V, Sangtongkitcharoen W, Tangjitmateea A, Praserthdama P, J. Power Sources, 139(1-2), 55 (2005)
Kim T, Liu G, Boaro M, Lee SI, Vohs JM, Gorte RJ, Al Madhib OH, Dabbousi BO, J. Power Sources, 155(2), 231 (2006)
Schluckner C, Subotic V, Lawlor V, Hochenauer C, J. Fuel Cell Sci. Technol., 12(5), 1053 (2015)
Subotic V, Schluckner C, Hochenauer C, J. Energy Inst., 89(1), 121 (2016)
Kim T, Liu G, Boaro M, Lee SI, Vohs JM, Gorte RJ, Al Madhib OH, Dabbousi BO, J. Power Sources, 155(2), 231 (2006)
Yang Y, Du X, Yang L, Huang Y, Xian H, Appl. Therm. Eng., 29(5-6), 1106 (2009)
Xu H, Dang Z, J. Appl. Energy, 178, 294 (2016)
He HP, Hill JM, Appl. Catal. A: Gen., 317(2), 284 (2007)
Chen T, Wang WG, Miao H, Li T, Xu C, J. Power Sources, 196(5), 2461 (2011)
Alzate-Restrepo V, Hill JM, Appl. Catal. A: Gen., 342(1-2), 49 (2008)
Koh JH, Yoo YS, Park JW, Lim HC, Solid State Ion., 149(3-4), 157 (2002)
Schluckner C, Subotic V, Lawlor V, Hochenauer C, J. Fuel Cell Sci. Technol., 12(5), 1053 (2015)
Andersson M, Yuan J, Sundén B, Appl. Energy, 87(5), 1461 (2010)
Borji M, Atashkari K, Nariman-zadeh N, Masoumpour M, J. Mech. Eng. Sci., 229(17), 3125 (2015)
Janardhanan VM, Deutschmann O, J. Power Sources, 162(2), 1192 (2006)
Yan M, Zeng M, Chen Q, Wang Q, Appl. Energy, 97, 754 (2012)
Jaworski Z, Pianko-Oprych P, Int. J. Hydrog. Energy, 42(27), 16920 (2017)
Hussain MM, Li X, Dincer I, J. Power Sources, 189(2), 916 (2009)
Costamagna P, Honegger K, J. Electrochem. Soc., 145(11), 3995 (1998)
Razbani O, Assadi M, Andersson M, Int. J. Hydrog. Energy, 38(24), 10068 (2013)
Sarmah P, Gogoi TK, Das R, Appl. Therm. Eng., 119, 98 (2017)
Dokmaingam P, Irvine JTS, Assabumrungrat S, Charojrochkul S, Laosiripojana N, Int. J. Hydrog. Energy, 35(24), 13271 (2010)
Iwai H, Yamamoto Y, Saito M, Yoshida H, J. Energy, 36(4), 2225 (2011)
Ni M, Int. J. Hydrog. Energy, 37(2), 1731 (2012)
Li PW, Chen SP, Chyu MK, J. Fuel Cell Sci. Technol., 3(2), 188 (2006)
Patcharavorachot Y, Arpornwich-anop A, Chuachuebsuk A, J. Power Sources, 177(2), 254 (2008)
Khazaee I, Rava A, Energy, 119, 235 (2017)
Xu Z, Zhang X, Li G, Xiao G, Wang JQ, Int. J. Hydrog. Energy, 42(16), 10785 (2017)
Xu H, Dang Z, Int. J. Heat Mass Transf., 109, 1252 (2017)
Borji M, Atashkari K, Ghorbani S, Nariman-Zadeh N, J. Mech. Eng. Sci., 231(4), 672 (2015)
Williams MC, Strakey JP, Surdoval WA, Wilson LC, Solid State Ion., 177(19), 2039 (2006)
McIntosh S, Gorte RJ, Chem. Rev., 104(10), 4845 (2004)
Ma T, Yan M, Zeng M, Yuan JI, Chen Q, Sundén B, Wang QW, Appl. Energy, 152, 217 (2015)
Assabumrungrata S, Laosiripojanab N, Pavarajarna V, Sangtongkitcharoen W, Tangjitmateea A, Praserthdama P, J. Power Sources, 139(1-2), 55 (2005)
Kim T, Liu G, Boaro M, Lee SI, Vohs JM, Gorte RJ, Al Madhib OH, Dabbousi BO, J. Power Sources, 155(2), 231 (2006)
Schluckner C, Subotic V, Lawlor V, Hochenauer C, J. Fuel Cell Sci. Technol., 12(5), 1053 (2015)
Subotic V, Schluckner C, Hochenauer C, J. Energy Inst., 89(1), 121 (2016)
Kim T, Liu G, Boaro M, Lee SI, Vohs JM, Gorte RJ, Al Madhib OH, Dabbousi BO, J. Power Sources, 155(2), 231 (2006)
Yang Y, Du X, Yang L, Huang Y, Xian H, Appl. Therm. Eng., 29(5-6), 1106 (2009)
Xu H, Dang Z, J. Appl. Energy, 178, 294 (2016)
He HP, Hill JM, Appl. Catal. A: Gen., 317(2), 284 (2007)
Chen T, Wang WG, Miao H, Li T, Xu C, J. Power Sources, 196(5), 2461 (2011)
Alzate-Restrepo V, Hill JM, Appl. Catal. A: Gen., 342(1-2), 49 (2008)
Koh JH, Yoo YS, Park JW, Lim HC, Solid State Ion., 149(3-4), 157 (2002)
Schluckner C, Subotic V, Lawlor V, Hochenauer C, J. Fuel Cell Sci. Technol., 12(5), 1053 (2015)
Andersson M, Yuan J, Sundén B, Appl. Energy, 87(5), 1461 (2010)
Borji M, Atashkari K, Nariman-zadeh N, Masoumpour M, J. Mech. Eng. Sci., 229(17), 3125 (2015)
Janardhanan VM, Deutschmann O, J. Power Sources, 162(2), 1192 (2006)
Yan M, Zeng M, Chen Q, Wang Q, Appl. Energy, 97, 754 (2012)
Jaworski Z, Pianko-Oprych P, Int. J. Hydrog. Energy, 42(27), 16920 (2017)
Hussain MM, Li X, Dincer I, J. Power Sources, 189(2), 916 (2009)
Costamagna P, Honegger K, J. Electrochem. Soc., 145(11), 3995 (1998)
Razbani O, Assadi M, Andersson M, Int. J. Hydrog. Energy, 38(24), 10068 (2013)
Sarmah P, Gogoi TK, Das R, Appl. Therm. Eng., 119, 98 (2017)
Dokmaingam P, Irvine JTS, Assabumrungrat S, Charojrochkul S, Laosiripojana N, Int. J. Hydrog. Energy, 35(24), 13271 (2010)
Iwai H, Yamamoto Y, Saito M, Yoshida H, J. Energy, 36(4), 2225 (2011)