ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 14, 2021
Accepted May 30, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Characterization and performance of SmxA1-xMnO3 (A=Ce, Sr, Ca) perovskite for efficient catalytic oxidation of toluene

School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China 1Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
jbzhou@swpu.edu.cn
Korean Journal of Chemical Engineering, November 2022, 39(11), 3032-3038(7), 10.1007/s11814-022-1194-0
downloadDownload PDF

Abstract

Catalytic oxidation of toluene was implemented over SmMnO3, Sm0.8A0.2MnO3 (ABO3, A=Ce, Sr, Ca) and Sm1-xCaxMnO3 (x=0.0, 0.1, 0.2, 0.3) perovskite oxides synthesized via sol-gel method. The effects of A-site substitution of SmMnO3 and the amount of calcium substitution of SmMnO3 perovskite-type catalyst on the catalytic activity of toluene were investigated in a fixed bed reactor. The structure and chemical properties of the perovskites were studied by XRD, SEM, XPS, and H2-TPR. The results showed that the substitution of Ce and Ca had a positive impact about the catalytic properties of toluene oxidation, while a negative impact was caused by the substitution of Sr. The catalytic activity of toluene oxidation followed the order of Sm0.8Ca0.2MnO3>Sm0.8Ce0.2MnO3>SmMnO3>Sm0.8Sr0.2MnO3 in terms of the temperature of T90%, at toluene concentration=1,000 ppm and weight hourly space velocity (WHSV)=3,000mL/ g·h. Sm0.8Ca0.2MnO3 had the highest catalytic capacity (T90%=238 ℃), which could be attributed to its high adsorbed oxygen concentration, Mn4+/Mn3+, and the best low-temperature reducibility (H2 consumption=0.36). Meanwhile, the Sm0.8Ca0.2MnO3 catalysts showed great long-term stability after 30 h of the reaction, and the toluene degradation rate remained over 95% at 350 ℃.

References

Kamal MS, Razzak SA, Hossain MM, Atmos. Environ., 140, 117 (2016)
Li X, Niu Y, Su H, Qi Y, Catal. Lett., 112, 91 (2021)
Weitekamp CA, Stevens T, Stewart MJ, Bhave P, Gilmour MI, Sci. Total Environ., 04, 135 (2020)
Song M, Kim K, Cho C, Kim D, Processes, 9, 112 (2021)
Biard PF, Couvert A, Giraudet S, J. Ind. Eng. Chem., 59, 70 (2018)
Yang C, Miao G, Pi Y, Xia Q, Wu J, Li Z, Xiao J, Chem. Eng. J., 370, 1128 (2019)
Chang Z, Wang C, Zhang G, Plasma Processes Polym., 17, 332 (2020)
Fujimoto TM, Ponczek M, Rochetto UL, Landers R, Tomaz E, Environ. Sci. Pollut. Res., 24, 6390 (2017)
Guo Y, Wen M, Li G, An T, Appl. Catal. B: Environ., 281, 1336 (2021)
Zhang CH, Wang C, Gil S, Boreave A, Retailleau L, Guo YL, Valverde JL, Giroir-Fendler A, Appl. Catal. B: Environ., 201, 552 (2017)
Spezzati G, Benavidez AD, DeLaRiva AT, Su Y, Hofmann JP, Asahina S, Olivier EJ, Neethling JH, Miller JT, Datye AK, Hensen EJM, Appl. Catal. B: Environ., 243, 36 (2019)
Yan XH, Zhang HF, Wu CL, Zhang C, Li SH, Int. J. Inorg. Mater., 34, 43 (2019)
Einaga H, Hyodo S, Eraoka Y, Top. Catal., 53, 629 (2010)
Liu L, Sun J, Ding J, Zhang Y, Jia J, Sun T, Inorg. Chem., 58, 14275 (2019)
Liu P, Wei G, Liang X, Chen D, He H, Chen T, Xi Y, Chen H, Han D, Zhu J, Appl. Clay Sci., 161, 265 (2018)
Rezlescu N, Rezlescu E, Popa PD, Doroftei C, Ignat M, Composites Part B, 60, 515 (2014)
Royer S, Duprez D, Can F, Courtois X, Batiot-Dupeyrat C, Laassiri S, Alamdari H, Chem. Rev., 114, 10292 (2014)
Zhang C, Guo Y, Guo Y, Lu G, Boreave A, Retailleau L, Baylet A, Giroir-Fendler A, Appl. Catal. B: Environ., 148, 490 (2014)
Hannora AE, Hanna FF, J. Mater. Sci. -Mater. Electron., 30, 12456 (2019)
Liu LZ, Li JX, Zhang HB, Li L, Zhou P, Meng XL, Guo MM, Jia JP, Sun TH, J. Hazard. Mater., 362, 178 (2019)
Liu LZ, Zhang HB, Jia JP, Sun TH, Sun MM, Inorg. Chem., 57, 8451 (2018)
Min JY, Yu LL, Tang PS, Chen HF, Key Eng. Mater., 748, 403 (2017)
Zhu XB, Tu X, Chen MH, Yang Y, Zheng CH, Zhou JS, Gao X, Catal. Commun., 92, 35 (2017)
Zhu X, Gao X, Qin R, Zeng Y, Qu R, Zheng C, Tu X, Appl. Catal. B: Environ., 293, 170 (2015)
Wang J, Su Y, Wang X, Chen J, Zhao Z, Shen M, Catal. Commun., 25, 106 (2012)
Fierro G, Jacono ML, Inversi M, Top. Catal., 10, 39 (2000)
Wu Y, Li L, Chu B, Yi Y, Qin Z, Fan M, Qin Q, He H, Zhang L, Dong L, Li B, Dong L, Appl. Catal. A: Gen., 568, 43 (2018)
Miniajluk N, Trawczynski J, Zawadzki M, Appl. Catal. A: Gen., 531, 119 (2017)
Lu Y, Dai Q, Wang X, Catal. Commun., 54, 114 (2014)
Zhang C, Hua W, Wang C, Guo Y, Guo Y, Lu G, Baylet A, Giroir-Fendler A, Appl. Catal. B: Environ., 134, 310 (2013)
Guo M, Liu L, Gu J, Zhang H, Min X, Liang J, Jia J, Li K, Sun T, Chin. J. Chem. Eng., 34, 278 (2021)
Yang J, Li L, Yang X, Song S, Li J, Jing F, Chu W, Catal. Today, 327, 19 (2019)
Giroir-Fendler A, lves-Fortunato M, Richard M, Wang C, Diaz JA, Gil S, Zhang C, Can F, Bion N, Guo Y, Appl. Catal. B: Environ., 180, 29 (2016)
Suarez-Vazquez SI, Gil S, Garcia-Vargas JM, Cruz-Lopez A, Giroir-Fendler A, Appl. Catal. B: Environ., 223, 201 (2018)
Cui X, Yang H, Zhang J, Wu T, Zhao P, Guo Q, Catal. Lett., 151, 3323 (2021)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로