ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 4, 2022
Accepted June 12, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Enhanced adsorption of lead ions by enzymatically synthesized poly(m-phenylenediamine)-graphene oxide composites

Department of Chemical Engineering, College of Engineering, University of Ulsan, Ulsan 44610, Korea 1School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
Korean Journal of Chemical Engineering, November 2022, 39(11), 3048-3054(7), 10.1007/s11814-022-1207-z
downloadDownload PDF

Abstract

Adsorption is considered efficient for removing metal ions dissolved in aquatic environments. For the successful performance of adsorption processes, the development of adsorbents possessing high adsorption capacity is essential. Herein, we report the enzymatic synthesis of composites consisting of m-phenylenediamine polymer (pmPDA) and graphene oxide (GO) by laccase and the adsorption properties of these composites for Pb2+, a representative toxic metal ion. Especially, the composite synthesized with initial 1 : 1 mass ratio of m-phenylenediamine monomer and GO was found to have the largest adsorption capacity for Pb2+. The Langmuir isotherm for the adsorption of Pb2+ by GO, pmPDA, and this composite, respectively, revealed that the maximum adsorption capacity, qmax, of this composite was the highest (2,164 μmol/g) being almost four times higher than that for pmPDA (564.7 μmol/g). The qmax for GO was 984.3 μmol/g being about two times higher than for pmPDA but less than a half of qmax for this composite. The composite was estimated to contain 56.1 wt% of pmPDA as examined by thermogravimetric analysis. This study demonstrates that the combination of the high surface area of GO and the functionality of pmPDA can significantly enhance the adsorption capacity for Pb2+.

References

Fu F, Wang Q, J. Environ. Manage., 92, 407 (2011)
Sharma RK, Agrawal M, J. Environ. Biol., 26, 301 (2005)
Alyuz B, Veli S, J. Hazard. Mater., 167, 482 (2009)
Ho YS, J. Hazard. Mater., 136, 681 (2006)
Martínez-Huitle CA, Brillas E, Appl. Catal. B: Environ., 87, 105 (2009)
Verma AK, Dash RR, Bhunia P, J. Environ. Manage., 93, 154 (2012)
Zularisam AW, Ismail AF, Salim R, Desalination, 194, 211 (2006)
Hajdu I, Bodnár M, Csikós Z, Wei S, Daróczi L, Kovács B, Győri Z, Tamás J, Borbély J, J. Membr. Sci., 409, 44 (2012)
Mohammadi SZ, Karimi MA, Afzali D, Mansouri F, Desalination, 262, 86 (2010)
Huang MR, Peng QY, Li XG, Chem.-Eur. J., 12, 4341 (2006)
Tolian G, Jafari SA, Zarei S, Water Pollut. Res. J. Can., 50, 109 (2015)
Xiao B, Thomas KM, Langmuir, 21, 3892 (2005)
Li XG, Huang MR, Duan W, Yang YL, Chem. Rev., 102, 2925 (2002)
Su Z, Zhang L, Chai L, Wang H, Yu W, Wang T, Yang J, New J. Chem., 38, 3984 (2014)
Yu W, Zhang L, Wang H, Chai L, J. Hazard. Mater., 260, 789 (2013)
Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110, 132 (2010)
Dreyer DR, Park S, Bielawski CW, Ruoff RS, Chem. Soc. Rev., 39, 228 (2010)
Bai H, Sheng K, Zhang P, Li C, Shi G, J. Mater. Chem., 21, 18653 (2011)
Chen S, Zhu J, Wu X, Han Q, Wang X, ACS Nano, 4, 2822 (2010)
Lee J, Kim J, Kim S, Min DH, Adv. Drug Deliv. Rev., 105, 275 (2016)
Zhuang XD, Chen Y, Liu G, Li PP, Zhu CX, Kang ET, Noeh KG, Zhang B, Zhu JH, Li YX, Adv. Mater., 22, 1731 (2010)
Ryu K, Xue H, Park J, J. Chem. Technol. Biotechnol., 88, 788 (2013)
Feng W, Ji P, Biotechnol. Adv., 29, 889 (2011)
Kobayashi S, Makino A, Chem. Rev., 109, 5288 (2009)
Zhang F, Zheng B, Zhang J, Huang X, Liu H, Guo S, Zhang J, J. Phys. Chem. C, 114, 8469 (2010)
Park J, Raseda N, Oh ES, Ryu K, J. Appl. Polym. Sci., 133, 43307 (2016)
Xu Y, Raseda N, Yoo IK, Ryu K, Can. J. Chem. Eng., 97, 869 (2019)
Raseda N, Park J, Ryu K, Korean J. Chem. Eng., 33, 3011 (2016)
Pham VH, Cuong TV, Hur SH, Shin EW, Kim JS, Chung JS, Kim EJ, Carbon, 48, 1945 (2010)
Xu Y, Yoo IK, Lee H, Ryu K, Chem. Pap., 73, 1705 (2019)
Nabinejad O, Sujan D, Rahman ME, Davies IJ, J. Therm. Anal. Calorim., 122, 227 (2015)
Deedar N, Aslam I, J. Environ. Sci., 21, 402 (2009)
Luo S, Xu X, Zhou G, Liu C, Tang Y, Liu Y, J. Hazard. Mater., 274, 145 (2014)
Bernal-Martínez LA, Hernández-López S, Barrera-Díaz C, Ureña-Núñez F, Bilyeu B, Ind. Eng. Chem. Res., 47, 1026 (2008)
Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok YS, Jiang Y, Gao B, Chem. Eng. J., 366, 608 (2019)
Medina RP, Nadres ET, Ballesteros FC, Rodrigues DF, Environ. Sci. Nano., 3, 638 (2016)
Ai S, Huang Y, Huang C, Yu W, Mao Z, Environ. Sci. Pollut. Res., 28, 2728 (2021)
Shahabuddin S, Tashakori C, Kamboh MA, Korrani ZS, Saidur R, Nodeh HR, Bidhendi ME, Environ. Sci. Water Res. Technol., 4, 549 (2018)
Fan L, Luo C, Sun M, Li X, Qiu H, Colloids Surf. B: Biointerfaces, 103, 523 (2013)
Ricco R, Konstas K, Styles MJ, Richardson JJ, Babarao R, Suzuki K, Scopece P, Falcaro P, J. Mater. Chem. A, 3, 19822 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로