ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 29, 2022
Accepted May 14, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A new antifouling metal-organic framework based UF membrane for oil-water separation: A comparative study on the effect of MOF (UiO-66-NH2) ligand modification

1Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 2Environmental Research Center (ERC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 3Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah 67149‐67346, Iran
sirus.zeinaddini@gmail.com
Korean Journal of Chemical Engineering, November 2022, 39(11), 3092-3101(10), 10.1007/s11814-022-1177-1
downloadDownload PDF

Abstract

Surface-modified metal-organic frameworks (MOFs) were used for the fabrication of polyethersulfone (PES)- based polymeric composite membranes by phase inversion method. Initially, zirconium-based MOF, UiO-66-NH2, was modified with melamine (denoted as UiO-66-NH-Mlm) and ethylenediamine (UiO-66-NH-EtNH2) via a solvothermal post-modification technique. The fabricated polymeric membranes were then employed for oil-water separation and showed satisfactory hydrophilicity and antifouling performance (PWF: 55.38 kg/m2·h, FRR: 90.67 %, Rr: 46.94%, Rir: 9.33% and >99% rejection to the oil). It was due to the formation of the hydration layer, arising from the available -NH2 groups (providing hydrogen-bonding) on the surface of the modified MOFs (WCA: 51.66o), and the lower surface roughness. Higher hydrophilicity and better antifouling efficiency were obtained for the membranes using UiO-66- NH-Mlm, compared to UiO-66-NH-EtNH2, due to the higher number of -NH2 groups. The membranes also exhibited good thermal stability owing to the fine dispersion of the modified MOFs in the polymeric texture and the presence of metallic cores in the MOFs. The membranes were also applied for frequent filtrations with great performance.

References

Kumar P, Bansal V, Kim KH, Kwon EE, J. Ind. Eng. Chem., 62, 130 (2018)
Wang Y, Wang B, Wang Q, Di J, Miao S, Yu J, ACS Appl. Mater. Interfaces, 11, 1672 (2018)
Xue Z, Cao Y, Liu N, Feng L, Jiang L, J. Mater. Chem. A, 2(8), 2445 (2014)
Schrope M, Nature, 472(7342), 152 (2011)
Lahann J, Nat. Nanotechnol., 3(6), 320 (2008)
Kleindienst S, Paul JH, Joye SB, Nat. Rev. Microbiol., 13(6), 388 (2015)
Fritt-Rasmussen J, Wegeberg S, Gustavson K, Water Air Soil Pollut., 226(10), 1 (2015)
Ma Q, Cheng H, Fane AG, Wang R, Zhang H, Small, 12(16), 2186 (2016)
Wang S, Liu K, Yao X, Jiang L, Chem. Rev., 115(16), 8230 (2015)
Chu Z, Feng Y, Seeger S, Angew. Chem.-Int. Edit., 54(8), 2328 (2015)
Miao R, Wang L, Zhu M, Deng D, Li S, Wang J, Liu T, Lv Y, Environ. Sci. Technol., 51(1), 167 (2016)
Muthumareeswaran M, Alhoshan M, Agarwal GP, Sci. Rep., 7(1), 1 (2017)
Zhu Y, Wang D, Jiang L, Jin J, NPG Asia Mater., 6(5), e101 (2014)
Marioryad H, Ghaedi AM, Emadzadeh D, Baneshi MM, Vafaei A, Lau WJ, ChemistrySelect, 5(6), 1972 (2020)
Fang X, Li J, Li X, Pan S, Zhang X, Sun X, Shen J, Han W, Wang L, Chem. Eng. J., 314, 38 (2017)
Ren Y, Li T, Zhang W, Wang S, Shi M, Shan C, Zhang W, Guan X, Lv L, Hua M, J. Hazard. Mater., 365, 312 (2019)
Wang YX, Li YJ, Yang H, Xu ZL, J. Membr. Sci., 580, 40 (2019)
Wang W, Zhu L, Shan B, Xie C, Liu C, Cui F, Li G, J. Membr. Sci., 548, 459 (2018)
Fan H, Gu J, Meng H, Knebel A, Caro J, Angew. Chem.-Int. Edit., 57(15), 4083 (2018)
Liu H, Yu H, Yuan X, Ding W, Li Y, Wang J, Chem. Eng. J., 374, 1394 (2019)
Shi Y, Huang J, Zeng G, Cheng W, Hu J, Shi L, Yi K, Chemosphere, 230, 40 (2019)
Gholami F, Zinadini S, Zinatizadeh A, Abbasi A, Sep. Purif. Technol., 194, 272 (2018)
Baneshi MM, Ghaedi AM, Vafaei A, Emadzadeh D, Lau WJ, Marioryad H, Jamshidi A, Environ. Res., 183, 109278 (2020)
Zhao J, Yang Y, Li C, Hou LA, Sep. Purif. Technol., 209, 482 (2019)
Lee W, Goh P, Lau W, Ong C, Ismail A, Sep. Purif. Technol., 214, 40 (2019)
Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM, Science, 341(6149), 1230444 (2013)
Dechnik J, Gascon J, Doonan CJ, Janiak C, Sumby CJ, Angew. Chem.-Int. Edit., 56(32), 9292 (2017)
Li X, Liu Y, Wang J, Gascon J, Li J, Van der Bruggen B, Chem. Soc. Rev., 46(23), 7124 (2017)
Kitagawa S, Chem. Soc. Rev., 43(16), 5415 (2014)
Maroofi SM, Mahmoodi NM, Colloids Surf. A: Physicochem. Eng. Asp., 572, 211 (2019)
Zarghami S, Mohammadi T, Sadrzadeh M, J. Membr. Sci., 582, 402 (2019)
Saththasivam J, Wubulikasimu Y, Ogunbiyi O, Liu Z, J. Water Process. Eng., 32, 100901 (2019)
Zhang J, Zhang F, Wang A, Lu Y, Li J, Zhu Y, Jin J, Langmuir, 35(5), 1682 (2018)
Samari M, Zinadini S, Zinatizadeh AA, Jafarzadeh M, Gholami F, Sep. Purif. Technol., 251, 117010 (2020)
Katz MJ, Brown ZJ, Colón YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK, ChemComm., 49(82), 9449 (2013)
Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP, Chem. Mater., 22(24), 6632 (2010)
Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP, J. Am. Chem. Soc., 130(42), 13850 (2008)
Li Y, Huang S, Zhou S, Fane AG, Zhang Y, Zhao S, J. Membr. Sci., 556, 154 (2018)
Cao J, Su Y, Liu Y, Guan J, He M, Zhang R, Jiang Z, J. Membr. Sci., 566, 268 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로