Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 24, 2022
Accepted June 30, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Adsorption properties of β-carotene on mesoporous carbon-coated honeycomb monolith: Kinetics, thermodynamics, and regeneration studies
1Center of Sustainable Research, Department Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 2INTROP, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 3Department of Food Science and Technology, School of Applied Sciences and Mathematics, Universiti Teknologi Brunei, BE1410, Bandar Seri Begawan, Brunei Darussalam
Korean Journal of Chemical Engineering, November 2022, 39(11), 3109-3120(12), 10.1007/s11814-022-1220-2
Download PDF
Abstract
A facile synthesis procedure of mesoporous carbons coated monolith (MCCM) adsorbent was accomplished using furfuryl alcohol as carbon precursor, triblock copolymer Pluronic F-127 as the structure-directing agent, pyrrole as the binder for polymerization with nitric acid as catalyst and inorganic cordierite as substrate through dipcoating method. Surface chemistry revealed the dominance of acidic sites over adsorbents surface with the majority of active sites occupied by the phenolic and carboxylic groups. The MCCM adsorbent exhibited representative Type IV isotherm with a uniform-distributed PSD plot centered at 6.18 nm. A thermodynamics study involving Langmuir and Freundlich models was applied to establish the adsorption equilibrium data at temperatures of 30 to 50 ℃. The Freundlich model best described the experiment data with maximum adsorption capacity of β-carotene onto MCCM was 192.64mg/g. Three kinetic models, Lagergren first-order, pseudo-second-order and intra-particle diffusion models, were employed to investigate the adsorption mechanism of β-carotene molecules onto active surface sites of MCCM adsorbent. Both the Lagergren first-order and pseudo-second-order kinetic models fitted with experimental data with the latter described perfectly with higher regression coefficient value (R2>0.99). Intra-particle diffusion featured the involvement in β-carotene adsorption mechanism, but it was not the sole rate-limiting step. The negative value of Gibbs free energy change (ΔGo) suggested the spontaneity of β-carotene adsorption process. In contrast, the positive values of enthalpy change (ΔHo) and entropy change (ΔSo) demonstrated the endothermic nature and entropy-driven of the adsorption process, respectively. The increased ΔGo with T indicated an increased degree of spontaneity at high temperatures. Regeneration studies of MCCM adsorbent exemplified a slight decrease in adsorption capacities after three consecutive regeneration cycles.
Keywords
References
Sundram K, Sambanthamurthi R, Tan YA, Asia Pac. J. Clin. Nutr., 12, 355 (2003)
Lai OM, Phuah ET, Lee YY, Basiron Y, Palm Oil. Bailey’s industrial oil and fat products, John Wiley & Sons, New Jersey (2020).
Liew KY, Yee AH, Nordin MR, J. Am. Oil Chem. Soc., 70, 539 (1993)
Ooi CK, Choo YM, Yap SC, Basiron Y, Ong ASH, J. Am. Oil Chem. Soc., 71, 423 (1994)
Baharin BS, Rahman KA, Karim MIA, Oyaizu T, Tanaka K, Tanaka Y, Takagi S, J. Am. Oil Chem. Soc., 75, 399 (1998)
Latip RA, Baharin BS, Man YBC, Rahman RA, J. Am. Oil Chem. Soc., 78, 83 (2001)
Tong J, Wu Z, Sun X, Xu X, Li C, Chin. J. Chem. Eng., 16, 270 (2008)
Ahmad AL, Chan CY, Shukor SRA, Mashitah MD, Chem. Eng. J., 148, 378 (2009)
Wu Z, Li C, J. Hazard. Mater., 171, 582 (2009)
Muhammad M, Choong TSY, Chuah TG, Yunus R, Yap YHT, Chem. Eng. J., 164, 178 (2010)
Kheok SC, Lim EE, J. Am. Oil Chem. Soc., 59, 129 (1982)
Falaras P, Kovanis I, Lezou F, Seiragakis G, Clay Min., 34, 221 (1999)
Low KS, Lee CK, Kong LY, J. Chem. Technol. Biotechnol., 72, 67 (1998)
Hussein MZB, Kuang D, Zainal Z, Teck TK, J. Colloid Interface Sci., 235, 93 (2001)
García-Bordejé E, Kapteijn F, Moulijn JA, Carbon, 40, 1079 (2002)
García-Bordejé E, Lázaro MJ, Moliner R, Álvarez PM, Gómez-Serrano V, Fierro JLG, Carbon, 44, 407 (2006)
Gierszal KP, Jaroniec M, J. Am. Oil Chem. Soc., 128, 10026 (2006)
Cheah W, Hosseini SK, Khan MA, Chuah TG, Choong TSY, Chem. Eng. J., 215, 747 (2013)
de Lathouder KM, Bakker J, Kreutzer MT, Kapteijn F, Moulijn JA, Wallin SA, Chem. Eng. Sci., 59, 5027 (2004)
Goertzen SL, Thériault KD, Oickle AM, Tarasuk AC, Andreas HA, Carbon, 48, 1252 (2010)
Hosseini S, Khan MA, Malekbala MR, Cheah W, Choong TSY, Chem. Eng. J., 171, 1124 (2011)
Wan Y, Cui X, Wen Z, J. Hazard. Mater., 198, 216 (2011)
Kruk M, Jaroniec M, Ko CH, Ryong R, Chem. Mater., 12, 1961 (2000)
Ryoo R, Joo SH, Kruk M, Jaroniec M, Adv. Mater., 13, 677 (2001)
Teoh YP, Khan MA, Choong TSY, Chem. Eng. J., 217, 248 (2013)
Jia YF, Thomas KM, Langmuir, 16, 1114 (2000)
Chen Y, Chen Q, Song L, Li HP, Hou FZ, Microporous Mesoporous Mater., 122, 7 (2009)
Hao GP, Li WC, Wang S, Wang GH, Qi L, Lu AH, Carbon, 49, 3762 (2011)
Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154, 337 (2008)
Langmuir I, J. Am. Oil Chem. Soc., 38, 2221 (1916)
McKay G, Bino MJ, Altamemi AR, Water Res., 19, 491 (1985)
Freundlich H, J. Phys. Chem., 57, 1100 (1906)
Fytianos K, Voudrias E, Kokkalis E, Chemosphere, 40, 3 (2000)
Kaynak G, Ersoz M, Kara H, J. Colloid Interface Sci., 280, 131 (2004)
Boki K, Kubo M, Kawasaki N, Mori H, J. Am. Oil Chem. Soc., 69, 372 (1992)
Boki K, Mori H, Kawasaki N, J. Am. Oil Chem. Soc., 71, 595 (1994)
Christidis GE, Kosiari S, Clay Clay Min., 51, 327 (2003)
Lagergren S, Sven. Vetenskapsakad. Handingarl., 24, 1 (1898)
Ho YS, McKay G, Water Res., 34, 735 (2000)
Weber Jr WJ, Morris JC, J. Sanitary Eng. Division, 89, 31 (1963)
Sarier N, Güler C, J. Am. Oil Chem. Soc., 65, 776 (1988)
Alkan M, Demirbaş O, Doğan M, Microporous Mesoporous Mater., 101, 388 (2007)
Argun ME, Dursun S, Ozdemir C, Karatas M, J. Hazard. Mater., 141, 77 (2007)
Tan IAW, Hameed BH, Ahmad AL, Chem. Eng. J., 127, 111 (2007)
Wu FC, Tseng RL, Juang RS, J. Colloid Interface Sci., 283, 49 (2005)
Srivastava VC, Mall ID, Mishra IM, J. Hazard. Mater., 134, 257 (2006)
Wang BE, Hu YY, Xie L, Peng L, Bioresour. Technol., 99, 794 (2008)
Sabah E, Çinar M, Çelik MS, Food Chem., 100, 1661 (2007)
Biswas AK, Sahoo J, Chatli MK, LWT - Food Sci. Technol., 44, 1809 (2011)
Zhang N, Qiu H, Si Y, Wang W, Gao J, Carbon, 49, 827 (2011)
Lai OM, Phuah ET, Lee YY, Basiron Y, Palm Oil. Bailey’s industrial oil and fat products, John Wiley & Sons, New Jersey (2020).
Liew KY, Yee AH, Nordin MR, J. Am. Oil Chem. Soc., 70, 539 (1993)
Ooi CK, Choo YM, Yap SC, Basiron Y, Ong ASH, J. Am. Oil Chem. Soc., 71, 423 (1994)
Baharin BS, Rahman KA, Karim MIA, Oyaizu T, Tanaka K, Tanaka Y, Takagi S, J. Am. Oil Chem. Soc., 75, 399 (1998)
Latip RA, Baharin BS, Man YBC, Rahman RA, J. Am. Oil Chem. Soc., 78, 83 (2001)
Tong J, Wu Z, Sun X, Xu X, Li C, Chin. J. Chem. Eng., 16, 270 (2008)
Ahmad AL, Chan CY, Shukor SRA, Mashitah MD, Chem. Eng. J., 148, 378 (2009)
Wu Z, Li C, J. Hazard. Mater., 171, 582 (2009)
Muhammad M, Choong TSY, Chuah TG, Yunus R, Yap YHT, Chem. Eng. J., 164, 178 (2010)
Kheok SC, Lim EE, J. Am. Oil Chem. Soc., 59, 129 (1982)
Falaras P, Kovanis I, Lezou F, Seiragakis G, Clay Min., 34, 221 (1999)
Low KS, Lee CK, Kong LY, J. Chem. Technol. Biotechnol., 72, 67 (1998)
Hussein MZB, Kuang D, Zainal Z, Teck TK, J. Colloid Interface Sci., 235, 93 (2001)
García-Bordejé E, Kapteijn F, Moulijn JA, Carbon, 40, 1079 (2002)
García-Bordejé E, Lázaro MJ, Moliner R, Álvarez PM, Gómez-Serrano V, Fierro JLG, Carbon, 44, 407 (2006)
Gierszal KP, Jaroniec M, J. Am. Oil Chem. Soc., 128, 10026 (2006)
Cheah W, Hosseini SK, Khan MA, Chuah TG, Choong TSY, Chem. Eng. J., 215, 747 (2013)
de Lathouder KM, Bakker J, Kreutzer MT, Kapteijn F, Moulijn JA, Wallin SA, Chem. Eng. Sci., 59, 5027 (2004)
Goertzen SL, Thériault KD, Oickle AM, Tarasuk AC, Andreas HA, Carbon, 48, 1252 (2010)
Hosseini S, Khan MA, Malekbala MR, Cheah W, Choong TSY, Chem. Eng. J., 171, 1124 (2011)
Wan Y, Cui X, Wen Z, J. Hazard. Mater., 198, 216 (2011)
Kruk M, Jaroniec M, Ko CH, Ryong R, Chem. Mater., 12, 1961 (2000)
Ryoo R, Joo SH, Kruk M, Jaroniec M, Adv. Mater., 13, 677 (2001)
Teoh YP, Khan MA, Choong TSY, Chem. Eng. J., 217, 248 (2013)
Jia YF, Thomas KM, Langmuir, 16, 1114 (2000)
Chen Y, Chen Q, Song L, Li HP, Hou FZ, Microporous Mesoporous Mater., 122, 7 (2009)
Hao GP, Li WC, Wang S, Wang GH, Qi L, Lu AH, Carbon, 49, 3762 (2011)
Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154, 337 (2008)
Langmuir I, J. Am. Oil Chem. Soc., 38, 2221 (1916)
McKay G, Bino MJ, Altamemi AR, Water Res., 19, 491 (1985)
Freundlich H, J. Phys. Chem., 57, 1100 (1906)
Fytianos K, Voudrias E, Kokkalis E, Chemosphere, 40, 3 (2000)
Kaynak G, Ersoz M, Kara H, J. Colloid Interface Sci., 280, 131 (2004)
Boki K, Kubo M, Kawasaki N, Mori H, J. Am. Oil Chem. Soc., 69, 372 (1992)
Boki K, Mori H, Kawasaki N, J. Am. Oil Chem. Soc., 71, 595 (1994)
Christidis GE, Kosiari S, Clay Clay Min., 51, 327 (2003)
Lagergren S, Sven. Vetenskapsakad. Handingarl., 24, 1 (1898)
Ho YS, McKay G, Water Res., 34, 735 (2000)
Weber Jr WJ, Morris JC, J. Sanitary Eng. Division, 89, 31 (1963)
Sarier N, Güler C, J. Am. Oil Chem. Soc., 65, 776 (1988)
Alkan M, Demirbaş O, Doğan M, Microporous Mesoporous Mater., 101, 388 (2007)
Argun ME, Dursun S, Ozdemir C, Karatas M, J. Hazard. Mater., 141, 77 (2007)
Tan IAW, Hameed BH, Ahmad AL, Chem. Eng. J., 127, 111 (2007)
Wu FC, Tseng RL, Juang RS, J. Colloid Interface Sci., 283, 49 (2005)
Srivastava VC, Mall ID, Mishra IM, J. Hazard. Mater., 134, 257 (2006)
Wang BE, Hu YY, Xie L, Peng L, Bioresour. Technol., 99, 794 (2008)
Sabah E, Çinar M, Çelik MS, Food Chem., 100, 1661 (2007)
Biswas AK, Sahoo J, Chatli MK, LWT - Food Sci. Technol., 44, 1809 (2011)
Zhang N, Qiu H, Si Y, Wang W, Gao J, Carbon, 49, 827 (2011)