Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 12, 2022
Accepted July 19, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Experimental and numerical simulation study on the hydrodynamic characteristics of spherical and irregular-shaped particles in a 3D liquid-fluidized bed
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China 1College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
hanhai5086@csu.edu.cn
Korean Journal of Chemical Engineering, November 2022, 39(11), 3165-3176(12), 10.1007/s11814-022-1234-9
Download PDF
Abstract
Recently, the fluidized bed has been shown to assist in improving the recovery of coarse minerals during flotation. In this study, the fluidization characteristics of spherical and irregular particles in a three-dimensional liquidsolid fluidized bed were studied by combining experimental and computational fluid dynamics (CFD) methods. Fluidization experiments were performed to investigate the effect of superficial velocity, particle shape, and particle size on solid holdup and bed expansion height. CFD model coupled different drag models for spherical and irregular particles were developed and validated by the experimental data of bed expansion ratio and pressure drop. Based on 3D CFD simulations, the axial and radial direction distributions of solid holdup, axial velocity, as well as granular temperature were obtained. Their distribution characteristics were analyzed and discussed in detail. The reported experimental data and simulation results can improve the understanding of irregular granular liquid-solid fluidized bed and provide a basis for further research on fluidized bed flotation.
Keywords
References
Epstein N, Int. J. Chem. React. Eng., 1 (2002)
Jameson GJ, Cooper L, Tang KK, Emer C, Miner. Eng., 146 (2020)
Liu B, Li X, Li Z, Sui H, Li H, Chem. Eng. Res. Des., 94, 501 (2015)
Shun D, Shin JS, Bae DH, Ryu HJ, Park J, Korean J. Chem. Eng., 34, 3125 (2017)
Lee HW, Jeong H, Ju YM, Lee SM, Korean J. Chem. Eng., 37, 1174 (2020)
Lu LQ, Yoo K, Benyahia S, Ind. Eng. Chem. Res., 55, 10477 (2016)
Sowmeyan R, Swaminathan G, Bioresour. Technol., 99, 6280 (2008)
Qureshi KM, Lup ANK, Khan S, Abnisa F, Daud WMAW, Korean J. Chem. Eng., 38, 1797 (2021)
Georges-Filteau D, Bouchard J, Desbiens A, IFAC-PapersOn-Line, 52, 66 (2019)
Fosu S, Awatey B, Skinner W, Zanin M, Miner. Eng., 77, 137 (2015)
Kohmuench JN, Mankosa MJ, Thanasekaran H, Hobert A, Miner. Eng., 121, 137 (2018)
Kohmuench JN, Mankosa MJ, Yan ES, Wyslouzil H, Christodoulou L, 2065 (2010).
Awatey B, Thanasekaran H, Kohmuench JN, Skinner W, Zanin M, Miner. Eng., 50, 99 (2013)
Cheng TW, Holtham PN, Miner. Eng., 8, 883 (1995)
Soto H, Barbery G, Mining Metall. Explor., 8, 16 (1991)
Ghatage SV, Peng Z, Sathe MJ, Doroodchi E, Padhiyar N, Moghtaderi B, Joshi JB, Evans GM, Chem. Eng. J., 256, 169 (2014)
Tripathy A, Bagchi S, Biswal SK, Meikap BC, Chem. Eng. Res. Des., 117, 520 (2017)
Tripathy A, Sahu AK, Biswal SK, Mishra BK, Particuology, 11, 789 (2013)
Kramer OJI, de Moel PJ, Padding JT, Baars ET, Hasadi YMFE, Boek ES, van der Hoek JP, J. Water Process Eng., 37, 101481 (2020)
Kramer OJI, Padding JT, van Vugt WH, de Moel PJ, Baars ET, Boek ES, van der Hoek JP, Int. J. Multiph. Flow, 127 (2020)
Peng J, Sun W, Han H, Xie L, Minerals, 11, 569 (2021)
Cornelissen JT, Taghipour F, Escudie R, Ellis N, Grace JR, Chem. Eng. Sci., 62, 6334 (2007)
Liu G, Wang P, Lu H, Yu F, Zhang Y, Wang S, Sun L, Particuology, 25, 42 (2016)
Luo H, Zhang C, Zhu J, Powder Technol., 348, 93 (2019)
Pang B, Wang S, Chen W, Hassan M, Lu H, Powder Technol., 366, 249 (2020)
Lau PW, Utikar R, Pareek V, Johnson S, Kale S, Lali A, Chem. Eng. Res. Des., 91, 1660 (2013)
He Y, Yan S, Wang T, Jiang B, Huang Y, Powder Technol., 287, 264 (2016)
Zhu HP, Zhou ZY, Yang RY, Yu AB, Chem. Eng. Sci., 63, 5728 (2008)
Armstrong LM, Gu S, Luo KH, Int. J. Heat Mass Transf., 53, 4949 (2010)
Loha C, Chattopadhyay H, Chatterjee PK, Chem. Eng. Sci., 75, 400 (2012)
Lu H, Yurong H, Gidaspow D, Chem. Eng. Sci., 58, 1197 (2003)
Neri A, Gidaspow D, AIChE J., 46, 52 (2000)
Wang J, Ge W, Li J, Chem. Eng. Sci., 63, 1553 (2008)
Dioguardi F, Dellino P, Mele D, Powder Technol., 260, 68 (2014)
Hua L, Zhao H, Li J, Wang J, Zhu Q, Powder Technol., 284, 299 (2015)
Lun CKK, Savage SB, Jeffrey DJ, Chepurniy N, J. Fluid Mech., 140, 223 (1984)
Menter FR, AIAA J., 32, 1598 (1994)
Gidaspow D, Multiphase flow and fluidization: continuum and kinetic theory descriptions, Academic press, New York (1994).
Wen CY, Chem. Eng. Prog. Symp. Ser., 62, 100 (1962)
Ergun S, Chem. Eng. Prog., 48, 89 (1952)
Haider A, Levenspiel O, Powder Technol., 58, 63 (1989)
Moraga FJ, Bonetto FJ, Lahey RT, Int. J. Multiph. Flow, 25, 1321 (1999)
Johnson PC, Jackson R, J. Fluid Mech., 176, 67 (1987)
Avidan AA, Yerushalmi J, Powder Technol., 32, 223 (1982)
Singh A, Verma R, Kishore K, Verma N, Chem. Eng. Process., 47, 957 (2008)
Romeo LM, Díez LI, Guedea I, Bolea I, Lupiáñez C, González A, Pallarés J, Teruel E, Exp. Therm. Fluid Sci., 35, 477 (2011)
Rahaman MS, Mavinic DS, Ellis N, J. Environ. Eng. Sci., 9, 137 (2014)
Ye Z, Shen Y, Ye X, Zhang Z, Chen S, Shi J, J. Environ. Sci., 26, 991 (2014)
Peng J, Sun W, Xie L, Han H, Xiao Y, Minerals, 12 (2022)
Islam MT, Nguyen AV, Miner. Eng., 134, 716 (2019)
IslamIslam MT, Nguyen AV, Chem. Eng. Res. Des., 159, 13 (2020)
Liu G, Wang P, Wang S, Sun L, Yang Y, Xu P, Adv. Powder Technol., 24, 537 (2013)
Jameson GJ, Cooper L, Tang KK, Emer C, Miner. Eng., 146 (2020)
Liu B, Li X, Li Z, Sui H, Li H, Chem. Eng. Res. Des., 94, 501 (2015)
Shun D, Shin JS, Bae DH, Ryu HJ, Park J, Korean J. Chem. Eng., 34, 3125 (2017)
Lee HW, Jeong H, Ju YM, Lee SM, Korean J. Chem. Eng., 37, 1174 (2020)
Lu LQ, Yoo K, Benyahia S, Ind. Eng. Chem. Res., 55, 10477 (2016)
Sowmeyan R, Swaminathan G, Bioresour. Technol., 99, 6280 (2008)
Qureshi KM, Lup ANK, Khan S, Abnisa F, Daud WMAW, Korean J. Chem. Eng., 38, 1797 (2021)
Georges-Filteau D, Bouchard J, Desbiens A, IFAC-PapersOn-Line, 52, 66 (2019)
Fosu S, Awatey B, Skinner W, Zanin M, Miner. Eng., 77, 137 (2015)
Kohmuench JN, Mankosa MJ, Thanasekaran H, Hobert A, Miner. Eng., 121, 137 (2018)
Kohmuench JN, Mankosa MJ, Yan ES, Wyslouzil H, Christodoulou L, 2065 (2010).
Awatey B, Thanasekaran H, Kohmuench JN, Skinner W, Zanin M, Miner. Eng., 50, 99 (2013)
Cheng TW, Holtham PN, Miner. Eng., 8, 883 (1995)
Soto H, Barbery G, Mining Metall. Explor., 8, 16 (1991)
Ghatage SV, Peng Z, Sathe MJ, Doroodchi E, Padhiyar N, Moghtaderi B, Joshi JB, Evans GM, Chem. Eng. J., 256, 169 (2014)
Tripathy A, Bagchi S, Biswal SK, Meikap BC, Chem. Eng. Res. Des., 117, 520 (2017)
Tripathy A, Sahu AK, Biswal SK, Mishra BK, Particuology, 11, 789 (2013)
Kramer OJI, de Moel PJ, Padding JT, Baars ET, Hasadi YMFE, Boek ES, van der Hoek JP, J. Water Process Eng., 37, 101481 (2020)
Kramer OJI, Padding JT, van Vugt WH, de Moel PJ, Baars ET, Boek ES, van der Hoek JP, Int. J. Multiph. Flow, 127 (2020)
Peng J, Sun W, Han H, Xie L, Minerals, 11, 569 (2021)
Cornelissen JT, Taghipour F, Escudie R, Ellis N, Grace JR, Chem. Eng. Sci., 62, 6334 (2007)
Liu G, Wang P, Lu H, Yu F, Zhang Y, Wang S, Sun L, Particuology, 25, 42 (2016)
Luo H, Zhang C, Zhu J, Powder Technol., 348, 93 (2019)
Pang B, Wang S, Chen W, Hassan M, Lu H, Powder Technol., 366, 249 (2020)
Lau PW, Utikar R, Pareek V, Johnson S, Kale S, Lali A, Chem. Eng. Res. Des., 91, 1660 (2013)
He Y, Yan S, Wang T, Jiang B, Huang Y, Powder Technol., 287, 264 (2016)
Zhu HP, Zhou ZY, Yang RY, Yu AB, Chem. Eng. Sci., 63, 5728 (2008)
Armstrong LM, Gu S, Luo KH, Int. J. Heat Mass Transf., 53, 4949 (2010)
Loha C, Chattopadhyay H, Chatterjee PK, Chem. Eng. Sci., 75, 400 (2012)
Lu H, Yurong H, Gidaspow D, Chem. Eng. Sci., 58, 1197 (2003)
Neri A, Gidaspow D, AIChE J., 46, 52 (2000)
Wang J, Ge W, Li J, Chem. Eng. Sci., 63, 1553 (2008)
Dioguardi F, Dellino P, Mele D, Powder Technol., 260, 68 (2014)
Hua L, Zhao H, Li J, Wang J, Zhu Q, Powder Technol., 284, 299 (2015)
Lun CKK, Savage SB, Jeffrey DJ, Chepurniy N, J. Fluid Mech., 140, 223 (1984)
Menter FR, AIAA J., 32, 1598 (1994)
Gidaspow D, Multiphase flow and fluidization: continuum and kinetic theory descriptions, Academic press, New York (1994).
Wen CY, Chem. Eng. Prog. Symp. Ser., 62, 100 (1962)
Ergun S, Chem. Eng. Prog., 48, 89 (1952)
Haider A, Levenspiel O, Powder Technol., 58, 63 (1989)
Moraga FJ, Bonetto FJ, Lahey RT, Int. J. Multiph. Flow, 25, 1321 (1999)
Johnson PC, Jackson R, J. Fluid Mech., 176, 67 (1987)
Avidan AA, Yerushalmi J, Powder Technol., 32, 223 (1982)
Singh A, Verma R, Kishore K, Verma N, Chem. Eng. Process., 47, 957 (2008)
Romeo LM, Díez LI, Guedea I, Bolea I, Lupiáñez C, González A, Pallarés J, Teruel E, Exp. Therm. Fluid Sci., 35, 477 (2011)
Rahaman MS, Mavinic DS, Ellis N, J. Environ. Eng. Sci., 9, 137 (2014)
Ye Z, Shen Y, Ye X, Zhang Z, Chen S, Shi J, J. Environ. Sci., 26, 991 (2014)
Peng J, Sun W, Xie L, Han H, Xiao Y, Minerals, 12 (2022)
Islam MT, Nguyen AV, Miner. Eng., 134, 716 (2019)
IslamIslam MT, Nguyen AV, Chem. Eng. Res. Des., 159, 13 (2020)
Liu G, Wang P, Wang S, Sun L, Yang Y, Xu P, Adv. Powder Technol., 24, 537 (2013)