ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 14, 2022
Accepted September 15, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Process modeling of syngas conversion to ethanol and acetic acid via the production of dimethyl ether and its carbonylation

1School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea 2School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea 3Department of Chemical Engineering, Ajou University, Suwon 16499, Korea 4Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
wblee@snu.ac.kr
Korean Journal of Chemical Engineering, December 2022, 39(12), 3204-3213(10), 10.1007/s11814-022-1297-7
downloadDownload PDF

Abstract

A process model was developed to simulate the generation of ethanol or acetic acid by selectively using syngas from coke oven gas as the carbon source. The simulation involved three reactors: the first reactor converts syngas into dimethyl ether over a hybrid Cu/ZnO/Al2O3/ferrierite catalyst; in the second reactor, carbonylation of dimethyl ether to methyl acetate takes place. The kinetic parameters for the carbonylation reaction were estimated by fitting the model to the experimental results. The third reactor uses the hydrogenation or hydrolysis of the methyl acetate to selectively synthesize ethanol or acetic acid, respectively. In the integrated process, a recycling loop was introduced, and its effects on the conversion, carbon molar yield, energy consumption, and capital and utility costs were evaluated. The results show that the recycling loop could enhance the carbon molar yield by approximately 20 times compared to that in the open-loop case owing to the high overall conversion (91-97%) of dimethyl ether in the second reactor.

References

Li Y, Huang S, Cheng Z, Wang S, Ge Q, Ma X, J. Catal., 365, 440 (2018)
Yue H, Ma X, Gong J, Acc. Chem. Res., 47, 1483 (2014)
Amao Y, Shuto N, Iwakuni H, Appl. Catal. B: Environ., 180, 403 (2016)
Zhou H, Zhu W, Shi L, Liu H, Liu S, Ni Y, Liu Y, He Y, Xu S, Li L, J. Mol. Catal. A-Chem., 417, 1 (2016)
Zhao N, Tian Y, Zhang L, Cheng Q, Lyu S, Ding T, Hu Z, Ma X, Li X, Chin. J. Catal., 40, 895 (2019)
Wang X, Li R, Yu C, Liu Y, Zhang L, Xu C, Zhou H, Fuel, 239, 794 (2019)
Liu Y, Murata K, Inaba M, Takahara I, Fuel Process. Technol., 110, 206 (2013)
Shen H, Li Y, Huang S, Cai K, Cheng Z, Lv J, Ma X, Catal. Today, 330, 117 (2019)
Subramani V, Gangwal SK, Energy Fuels, 22, 814 (2008)
Yoneda N, Kusano S, Yasui M, Pujado P, Wilcher S, Appl. Catal. A: Gen., 221, 253 (2001)
Pal P, Nayak J, Sep. Purif. Rev., 46, 44 (2017)
Wang Y, Zhao Y, Lv J, Ma X, ChemCatChem., 9, 2085 (2017)
Huang X, Ma M, Miao S, Zheng Y, Chen M, Shen W, Appl. Catal. A: Gen., 531, 79 (2017)
Zhang F, Chen Z, Fang X, Liu H, Liu Y, Zhu W, J. Energy Chem., 61, 203 (2021)
Shigematsu A, Yamada T, Kitagawa H, J. Am. Chem. Soc., 134, 13145 (2012)
Pulyalinа AY, Polotskaya GA, Veremeychik KY, Goikhman MY, Podeshvo IV, Toikka AM, Fuel Process. Technol., 139, 178 (2015)
Dong Y, Dai C, Lei Z, Ind. Eng. Chem., 57, 11167 (2018)
Pöpken T, Götze L, Gmehling J, Ind. Eng. Chem., 39, 2601 (2000)
Yu W, Hidajat K, Ray AK, Appl. Catal. A: Gen., 260, 191 (2004)
He T, Liu X, Xu S, Han X, Pan X, Hou G, Bao X, J. Phys. Chem. C, 120, 22526 (2016)
Zhan H, Huang S, Li Y, Lv J, Wang S, Ma X, Catal. Sci. Technol., 5, 4378 (2015)
Junlong L, Huifu X, Huang X, Pei-Hao W, Huang SJ, Shang-Bin L, Wenjie S, Chin. J. Catal., 31, 729 (2010)
Liu Y, Murata K, Inaba M, React. Kinet. Mech. Catal., 117, 223 (2016)
Sunley GJ, Watson DJ, Catal. Today, 58, 293 (2000)
Cheung P, Bhan A, Sunley GJ, Law DJ, Iglesia E, J. Catal., 245, 110 (2007)
Rasmussen DB, Christensen JM, Temel B, Studt F, Moses P, Rossmeisl J, Riisager A, Jensen AD, Catal. Sci. Technol., 7, 1141 (2017)
Zhan E, Xiong Z, Shen W, J. Energy Chem., 36, 51 (2019)
Park J, Woo Y, Jung HS, Yang H, Lee WB, Bae JW, Park MJ, Catal. Today, 388-389, 323 (2022)
Jun HJ, Park MJ, Baek SC, Bae JW, Ha KS, Jun KW, J. Nat. Gas Chem., 20, 9 (2011)
Park N, Park MJ, Lee YJ, Ha KS, Jun KW, Fuel Process. Technol., 125, 139 (2014)
Jung HS, Zafar F, Wang X, Nguyen TX, Hong CH, Hur YG, Choung JW, Park MJ, Bae JW, ACS Catal., 11, 14210 (2021)
Douglas JM, Conceptual design of chemical processes, Mc-Graw- Hill, New York (1988).
Kim S, Kim Y, Oh SY, Park MJ, Lee WB, J. Nat. Gas Sci. Eng., 96, 104308 (2021)
Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Bhattacharyya D, Analysis, synthesis, and design of chemical processes, Prentice Hall, New Jersey (2018).
Diemer RB, Luyben WL, Ind. Eng. Chem. Res., 49, 12224 (2010)
Ham H, Jung HS, Kim HS, Kim J, Cho SJ, Lee WB, Park MJ, Bae JW, ACS Catal., 10, 5135 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로