Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 8, 2022
Accepted August 10, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Cavitation cloud dynamic characteristics of dual-chamber self-excited oscillatory waterjet
Dezheng Li1 2
Yong Kang1 2†
Hanqing Shi1 2
Yi Hu1 3
Qi Liu4
Hongchao Li1 2
Jincheng Hu1 2
Jiamin Li1 2
1Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan 430072, China 2School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China 3The Institute of Technological Sciences, The Institute of Technological Sciences, Wuhan 430072, China 4China Ship Development and Design Center, Wuhan 430064, China
Korean Journal of Chemical Engineering, December 2022, 39(12), 3214-3226(13), 10.1007/s11814-022-1258-1
Download PDF
Abstract
Aiming to enhance self-excited oscillating cavitation jet performance, the effect of the dual-chamber nozzle structure on the jet dynamical characteristics was designed and investigated. With high-speed camera technology, the cavitation phenomenon was investigated to analyze the area pattern and shedding period of the cavitation cloud under different nozzle structures. The results showed that the dual-chamber nozzle significantly improved the jet cavitation strength, and the cavitation cloud area increased by 76% and decreased the shedding period by 90% compared with the single-chamber nozzle. In the upstream chamber, the upper shrinkage ratio had a more drastic effect on the cavitation cloud area and shedding frequency than the lower shrinkage ratio with a more sensitive effect on the shedding frequency. In the downstream chamber, the outlet diameter ratio and chamber diameter were more sensitive to the regulation of cavitation cloud shedding frequency and area, respectively, with the optimal regulation at the outlet diameter ratio of 1 and chamber length of 6 mm. The chamber diameter modulated the cavitation cloud most drastically with a comprehensive performance optimum at 12mm, which the area fluctuation reached 76.8%. The results provide a basis for further research and application of dual-chamber nozzles.
Keywords
References
Xu S, Wang J, Chen W, Ji B, Yan H, Zhang Z, Long X, Ultrason. Sonochem., 83, 105924 (2022)
Liu C, Chen RR, Han CZ, Pi XQ, Chang SL, Jiang H, Long XP, Du MQ, Plos One, 16 (2021)
Soyama H, J. Eng. Mater.-T Asme, 126, 123 (2004)
Hu Y, Kang Y, Wang XC, Li XH, Long XP, Zhai GY, Huang M, Int. J. Precis. Eng. Man., 15, 1973 (2014)
Zhu J, Long X, Wu W, Yao H, J. Mech. Sci. Technol., 22, 1926 (2008)
Soyama H, Kikuchi T, Nishikawa M, Takakuwa O, Surf. Coat. Technol., 205, 3167 (2011)
Johnson Jr V, Lindenmuth W, Conn A, Frederick G, Feasibility study of tuned-resonator, pulsating cavitating water jet for deephole drilling, Hydronautics Incorporated, United States (1981).
Johnson V, Conn A, Lindenmuth W, Chahine G, Frederick G, Proceedings Of The International Symposium On Jet Cutting Technology, Surrey, England, 16 (1982).
Conn A, 5th Int'l. Symp. On Jet Cutting Tech., 1 (1980)
Fang ZL, Kang Y, Wang XC, Li D, Hu Y, Huang M, Wang XY, IOP Conf. Ser. Earth Env. Sci., 22 (2014)
Li D, Kang Y, Ding X, Wang X, Fang Z, Stroj Vestn-J Mech E, 63, 92 (2017)
Shi H, Kang Y, Li D, Fang Z, P I Mech Eng C-J Mec, 234, 4589 (2020)
Fang Z, Wu Q, Zhang M, Liu H, Jiang P, Li D, Energies, 12 (2019)
Li D, Kang Y, Ding X, Wang X, Liu W, J. Mech. Sci. Technol., 31, 1203 (2017)
Liu W, Kang Y, Zhang M, Wang X, Li D, Int. J. Heat Fluid Flow, 68, 158 (2017)
Soyama H, J. Fluid Eng.-T Asme, 127, 1095 (2005)
Xu M, Wu M, Mi J, Exp. Therm. Fluid Sci., 106, 226 (2019)
Hlaváč LM, Proceedings of the 2007 American WJTA Conference and Expo, Houston, TX, USA, 19 (2007).
Wang X, Li Y, Hu Y, Ding X, Xiang M, Li D, Energies, 13 (2020)
Hutli E, Nedeljkovic MS, Bonyar A, Legrady D, Exp. Therm. Fluid Sci., 80, 281 (2017)
Hutli E, Nedeljkovic M, Bonyar A, Int. J. Heat Mass Transf., 117, 873 (2018)
Soyama H, Wear, 297, 895 (2013)
Peng C, Tian S, Li G, Ocean Eng., 149, 1 (2018)
Pianthong K, Zakrzewski S, Behnia M, Milton BE, Exp. Therm. Fluid Sci., 27, 589 (2003)
Soyama H, Yamauchi Y, Adachi Y, Sato K, Shindo T, Oba R, Jsme Int. J. B-Fluid T, 38, 245 (1995)
Laberteaux KR, Ceccio SL, Mastrocola VJ, Lowrance JL, Exp. Fluids, 24, 489 (1998)
Liu H, Kang C, Zhang W, Zhang T, Exp. Therm. Fluid Sci., 88, 504 (2017)
Wright MM, Epps B, Dropkin A, Truscott TT, Exp. Fluids, 54 (2013)
Wu Q, Wei W, Deng B, Jiang P, Li D, Zhang M, Fang Z, J. Mech. Sci. Technol., 33, 621 (2019)
Hutli E, Nedeljkovic M, Bonyar A, J. Braz. Soc. Mech. Sci., 41 (2019)
Hutli E, Nedeljkovic MS, Czifrus S, Therm. Sci., 24, 407 (2020)
Hutli EAF, Nedeljkovic MS, J. Fluid Eng.-T Asme, 130 (2008)
Hutli E, Petrovic PB, Nedeljkovic M, Legrady D, Flow Turbul Combust (2021).
Roohi E, Pendar MR, Rahimi A, Appl. Math. Model., 40, 542 (2016)
Peng GY, Yang CX, Oguma Y, Shimizui S, J. Hydrodyn., 28, 986 (2016)
Passandideh-Fard M, Roohi E, Int. J. Comput. Fluid D, 22, 97 (2008)
Pendar MR, Roohi E, Ocean Eng., 112, 287 (2016)
Li J, Xu R, Wang L, J. Eng. Thermophys-Rus, 25, 241 (2004)
Kolsek T, Jelic N, Duhovnik J, Appl. Math. Model., 31, 2355 (2007)
Roohi E, Zahiri AP, Passandideh-Fard M, Appl. Math. Model., 37, 6469 (2013)
Pendar MR, Roohi E, Int. J. Multiph. Flow, 98, 1 (2018)
Movahedian A, Pasandidehfard M, Roohi E, Ocean Eng., 192 (2019)
Pendar MR, Esmaeilifar E, Roohi E, Int. J. Multiph. Flow, 132 (2020)
Sekyi-Ansah J, Wang Y, Tan Z, Zhu J, Li F, Arab. J. Sci. Eng., 45, 4907 (2020)
Wen Q, Kim HD, Liu YZ, Kim KC, Exp. Therm. Fluid Sci., 57, 396 (2014)
Stutz B, Legoupil S, Exp. Fluids, 35, 130 (2003)
Kolahan A, Roohi E, Pendar MR, Ocean Eng., 182, 235 (2019)
Liu C, Chen RR, Han CZ, Pi XQ, Chang SL, Jiang H, Long XP, Du MQ, Plos One, 16 (2021)
Soyama H, J. Eng. Mater.-T Asme, 126, 123 (2004)
Hu Y, Kang Y, Wang XC, Li XH, Long XP, Zhai GY, Huang M, Int. J. Precis. Eng. Man., 15, 1973 (2014)
Zhu J, Long X, Wu W, Yao H, J. Mech. Sci. Technol., 22, 1926 (2008)
Soyama H, Kikuchi T, Nishikawa M, Takakuwa O, Surf. Coat. Technol., 205, 3167 (2011)
Johnson Jr V, Lindenmuth W, Conn A, Frederick G, Feasibility study of tuned-resonator, pulsating cavitating water jet for deephole drilling, Hydronautics Incorporated, United States (1981).
Johnson V, Conn A, Lindenmuth W, Chahine G, Frederick G, Proceedings Of The International Symposium On Jet Cutting Technology, Surrey, England, 16 (1982).
Conn A, 5th Int'l. Symp. On Jet Cutting Tech., 1 (1980)
Fang ZL, Kang Y, Wang XC, Li D, Hu Y, Huang M, Wang XY, IOP Conf. Ser. Earth Env. Sci., 22 (2014)
Li D, Kang Y, Ding X, Wang X, Fang Z, Stroj Vestn-J Mech E, 63, 92 (2017)
Shi H, Kang Y, Li D, Fang Z, P I Mech Eng C-J Mec, 234, 4589 (2020)
Fang Z, Wu Q, Zhang M, Liu H, Jiang P, Li D, Energies, 12 (2019)
Li D, Kang Y, Ding X, Wang X, Liu W, J. Mech. Sci. Technol., 31, 1203 (2017)
Liu W, Kang Y, Zhang M, Wang X, Li D, Int. J. Heat Fluid Flow, 68, 158 (2017)
Soyama H, J. Fluid Eng.-T Asme, 127, 1095 (2005)
Xu M, Wu M, Mi J, Exp. Therm. Fluid Sci., 106, 226 (2019)
Hlaváč LM, Proceedings of the 2007 American WJTA Conference and Expo, Houston, TX, USA, 19 (2007).
Wang X, Li Y, Hu Y, Ding X, Xiang M, Li D, Energies, 13 (2020)
Hutli E, Nedeljkovic MS, Bonyar A, Legrady D, Exp. Therm. Fluid Sci., 80, 281 (2017)
Hutli E, Nedeljkovic M, Bonyar A, Int. J. Heat Mass Transf., 117, 873 (2018)
Soyama H, Wear, 297, 895 (2013)
Peng C, Tian S, Li G, Ocean Eng., 149, 1 (2018)
Pianthong K, Zakrzewski S, Behnia M, Milton BE, Exp. Therm. Fluid Sci., 27, 589 (2003)
Soyama H, Yamauchi Y, Adachi Y, Sato K, Shindo T, Oba R, Jsme Int. J. B-Fluid T, 38, 245 (1995)
Laberteaux KR, Ceccio SL, Mastrocola VJ, Lowrance JL, Exp. Fluids, 24, 489 (1998)
Liu H, Kang C, Zhang W, Zhang T, Exp. Therm. Fluid Sci., 88, 504 (2017)
Wright MM, Epps B, Dropkin A, Truscott TT, Exp. Fluids, 54 (2013)
Wu Q, Wei W, Deng B, Jiang P, Li D, Zhang M, Fang Z, J. Mech. Sci. Technol., 33, 621 (2019)
Hutli E, Nedeljkovic M, Bonyar A, J. Braz. Soc. Mech. Sci., 41 (2019)
Hutli E, Nedeljkovic MS, Czifrus S, Therm. Sci., 24, 407 (2020)
Hutli EAF, Nedeljkovic MS, J. Fluid Eng.-T Asme, 130 (2008)
Hutli E, Petrovic PB, Nedeljkovic M, Legrady D, Flow Turbul Combust (2021).
Roohi E, Pendar MR, Rahimi A, Appl. Math. Model., 40, 542 (2016)
Peng GY, Yang CX, Oguma Y, Shimizui S, J. Hydrodyn., 28, 986 (2016)
Passandideh-Fard M, Roohi E, Int. J. Comput. Fluid D, 22, 97 (2008)
Pendar MR, Roohi E, Ocean Eng., 112, 287 (2016)
Li J, Xu R, Wang L, J. Eng. Thermophys-Rus, 25, 241 (2004)
Kolsek T, Jelic N, Duhovnik J, Appl. Math. Model., 31, 2355 (2007)
Roohi E, Zahiri AP, Passandideh-Fard M, Appl. Math. Model., 37, 6469 (2013)
Pendar MR, Roohi E, Int. J. Multiph. Flow, 98, 1 (2018)
Movahedian A, Pasandidehfard M, Roohi E, Ocean Eng., 192 (2019)
Pendar MR, Esmaeilifar E, Roohi E, Int. J. Multiph. Flow, 132 (2020)
Sekyi-Ansah J, Wang Y, Tan Z, Zhu J, Li F, Arab. J. Sci. Eng., 45, 4907 (2020)
Wen Q, Kim HD, Liu YZ, Kim KC, Exp. Therm. Fluid Sci., 57, 396 (2014)
Stutz B, Legoupil S, Exp. Fluids, 35, 130 (2003)
Kolahan A, Roohi E, Pendar MR, Ocean Eng., 182, 235 (2019)