Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 21, 2022
Accepted August 18, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Numerical investigation and deep learning-based prediction of heat transfer characteristics and bubble dynamics of subcooled flow boiling in a vertical tube
Computational and Data-Driven Multiphysics Laboratory, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran 1Multiphase Flow Lab, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
pourbagian@kntu.ac.ir
Korean Journal of Chemical Engineering, December 2022, 39(12), 3227-3245(19), 10.1007/s11814-022-1267-0
Download PDF
Abstract
Subcooled flow boiling presents an enormous ability of heat transfer rate, which is extremely important in the heat-dissipating systems of many industrial applications, such as power plants and internal combustion engines. Using an Euler-Euler-based three-dimensional numerical simulation of subcooled flow boiling in a vertical tube, we investigated different heat transfer quantities (average and local heat transfer coefficient, average and local vapor volume fraction, average and local wall temperature) and bubble dynamics quantities (bubble departure diameter, bubble detachment frequency, bubble detachment waiting time, and nucleation site density) under various boundary conditions (pressure, subcooled temperature, mass flux, heat flux). Numerical results show that an increase in heat flux leads to the increase in all of the physical quantities of interest but the bubble detachment frequency. An entirely opposite behavior is observed when we change the mass flux and inlet subcooled temperature. Furthermore, a rise in pressure reduces all of the target quantities but the wall temperature and bubble detachment frequency. Since numerical simulation of such multiphase flow requires significant computational resources, we also present a deep learning approach, based on artificial neural networks (ANN), to predicting the physical quantities of interest. Prediction results demonstrate that the ANN model is capable of accurately predicting the target quantities with mean absolute errors less than 2.5% and R-squared more than 0.93.
Keywords
References
Qiu Y, Garg D, Zhou L, Kharangate CR, Kim SM, Mudawar I, Int. J. Heat Mass Transf., 149, 119211 (2020)
Celata GP, Cumo M, Mariani A, Zummo G, Int. J. Therm. Sci., 39(9-11), 896 (2000)
Guo Z, Yang J, Tan Z, Tian X, Wang Q, Int. J. Heat Mass Transf., 174, 121296 (2021)
Zhou J, Bai J, Liu Y, Micromachines, 13(5), 781 (2022)
Lee J, Jo D, Chae H, Chang SH, Jeong YH, Jeong JJ, Exp. Therm. Fluid Sci., 69, 86 (2015)
Fan Q, Zhang Z, Huang X, Adv. Theory Simulations, 2200047 (2022)
Zhang G, Chen J, Zhang Z, Sun M, Yu Y, Wang J, Cai S, Smart Mater. Struct., 31(7), 075008 (2022)
Steinke ME, Kandlikar SG, J. Heat Transf. -Trans. ASME, 126(4), 518 (2004)
Jige D, Inoue N, Int. J. Heat Fluid Flow, 78, 108433 (2019)
Schrock V, Grossman L, Forced convection boiling studies. final report on forced convection vaporization project, California. Univ., Berkeley. Inst. of Engineering Research (1959).
Bennett J, Trans. Inst. Chem. Eng., 39, 113 (1961)
Chen JC, Ind. Eng. Chem. Process Des. Dev., 5(3), 322 (1966)
Shah MM, ASHRAE Trans., 88, 185 (1982)
Bennett DL, Chen JC, AIChE J., 26(3), 454 (1980)
Kandlikar SG, J. Heat Transf. -Trans. ASME, 112(1), 219 (1990)
Lee HJ, Lee SY, Int. J. Multiph. Flow, 27(12), 2043 (2001)
Alimoradi H, Zaboli S, Shams M, Korean J. Chem. Eng., 39(1), 69 (2022)
Zaboli S, Alimoradi H, Shams M, J. Therm. Anal. Calorim., 147, 10659 (2022)
Bertsch SS, Groll EA, Garimella SV, Int. J. Heat Mass Transf., 52(7-8), 2110 (2009)
Bennett DL, Davies MW, Hertzler BL, Am. Inst. Chem. Eng. Symposium Ser., 76, 91 (1980)
Edelstein S, Perez A, Chen J, AIChE J., 30(5), 840 (1984)
Fang X, Wu Q, Yuan Y, Int. J. Heat Mass Transf., 107, 972 (2017)
Piasecka M, Int. J. Heat Mass Transf., 81, 114 (2015)
Strąk K, Piasecka M, Int. J. Heat Mass Transf., 158, 119933 (2020)
Paul S, Fernandino M, Dorao CA, Int. J. Heat Mass Transf., 164, 120589 (2021)
Zhang G, Zhang Z, Sun M, Yu Y, Wang J, Cai S, Adv. Eng. Mater., 2101680 (2022)
Chen B, Lu Y, Li W, Dai X, Hua X, Xu J, Wang Z, Zhang C, Gao D, Li Y, Int. J. Heat Mass Transf., 192, 122927 (2022)
Ahmadlou M, Delavar MR, Basiri A, Karimi M, J. Indian Soc. Remote Sensing, 47(1), 53 (2019)
Amirkolaee HA, Arefi H, Ahmadlou M, Raikwar V, Remote Sensing Environ., 274, 113014 (2022)
Azadeh A, Saberi M, Kazem A, Ebrahimipour V, Nourmohammadzadeh A, Saberi Z, Appl. Soft Comput., 13(3), 1478 (2013)
Zhou L, Fan Q, Huang X, Liu Y, Optimization, In press (2022).
Alimoradi H, Shams M, Appl. Therm. Eng., 111, 1039 (2017)
Seong Y, Park C, Choi J, Jang I, Energies, 13(4), 968 (2020)
Wang X, Lyu X, Ocean Eng., 221, 108508 (2021)
Wang Y, Wang H, Zhou B, Fu H, Ocean Eng., 242, 110106 (2021)
Cheung S, Vahaji S, Yeoh G, Tu J, Int. J. Heat Mass Transf., 75, 736 (2014)
Launder BE, Spalding DB, Comput. Meth. Appl. Mech. Eng., 3, 269 (1974)
Ranz WE, Marshall WR, Chem. Eng. Prog., 48(3), 141 (1952)
Ishii M, Zuber N, AIChE J., 25(5), 843 (1979)
Kurul N, Podowski MZ, Multidimensional effects in forced convection subcooled boiling, In: Proceedings of the 9th Heat Transfer Conference, 19-24 (1990).
Lemmert M, Chawla JM, Influence of flow velocity on surface boiling heat transfer coefficient, ISBN 0-12-314450-7, pp. 237-247 (1977).
Tolubinsky VI, Kostanchuk DM, Vapour bubbles groth rate and heat transfer intensity at subcooled water boiling; Heat Transfer 1970.
Cole R, AIChE J., 6(4), 533 (1960)
Bartolomei G, Brantov V, Molochnikov YS, Kharitonov YV, Solodkii V, Batashova G, Mikhailov V, Therm. Eng., 29(3), 132 (1982)
Rouhani SZ, Axelsson E, Int. J. Heat Mass Transf., 13(2), 383 (1970)
Krizhevsky A, Sutskever I, Hinton GE, Commun. ACM, 60(6), 84 (2017)
Svozil D, Kvasnicka V, Pospichal J, Chemometrics Intell. Lab. Syst., 39(1), 43 (1997)
Kingma DP, Jimmy B, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).
Bergles AE, Rohsenow WM, ASME J. Heat Transfer, 1, 365 (1964)
Liu D, Lee PS, Garimella SV, Int. J. Heat Mass Transf., 48(25-26), 5134 (2005)
Basu N, Warrier GR, Dhir VK, J. Heat Transf. -Trans. ASME, 124(4), 717 (2002)
Costigan G, Whalley P, Int. J. Multiph. Flow, 23(2), 263 (1997)
Basu N, Warrier GR, Dhir VK, J. Heat Transf. -Trans. ASME, 127(2), 131 (2005)
Friz W, Physic. Zeitschz., 36, 379 (1935)
Yang L, Guo A, Liu D, Exp. Heat Transf., 29(2), 221 (2016)
Sugrue R, Buongiorno J, McKrell T, Nucl. Eng. Des., 279, 182 (2014)
Yoo J, Estrada-Perez CE, Hassan YA, Int. J. Multiph. Flow, 84, 292 (2016)
Han CY, Griffith P, Int. J. Heat Mass Transf., 8, 905 (1965)
Zeng LZ, Klausner JF, J. Heat Transf. -Trans. ASME, 115, 215 (1993)
Celata GP, Cumo M, Mariani A, Zummo G, Int. J. Therm. Sci., 39(9-11), 896 (2000)
Guo Z, Yang J, Tan Z, Tian X, Wang Q, Int. J. Heat Mass Transf., 174, 121296 (2021)
Zhou J, Bai J, Liu Y, Micromachines, 13(5), 781 (2022)
Lee J, Jo D, Chae H, Chang SH, Jeong YH, Jeong JJ, Exp. Therm. Fluid Sci., 69, 86 (2015)
Fan Q, Zhang Z, Huang X, Adv. Theory Simulations, 2200047 (2022)
Zhang G, Chen J, Zhang Z, Sun M, Yu Y, Wang J, Cai S, Smart Mater. Struct., 31(7), 075008 (2022)
Steinke ME, Kandlikar SG, J. Heat Transf. -Trans. ASME, 126(4), 518 (2004)
Jige D, Inoue N, Int. J. Heat Fluid Flow, 78, 108433 (2019)
Schrock V, Grossman L, Forced convection boiling studies. final report on forced convection vaporization project, California. Univ., Berkeley. Inst. of Engineering Research (1959).
Bennett J, Trans. Inst. Chem. Eng., 39, 113 (1961)
Chen JC, Ind. Eng. Chem. Process Des. Dev., 5(3), 322 (1966)
Shah MM, ASHRAE Trans., 88, 185 (1982)
Bennett DL, Chen JC, AIChE J., 26(3), 454 (1980)
Kandlikar SG, J. Heat Transf. -Trans. ASME, 112(1), 219 (1990)
Lee HJ, Lee SY, Int. J. Multiph. Flow, 27(12), 2043 (2001)
Alimoradi H, Zaboli S, Shams M, Korean J. Chem. Eng., 39(1), 69 (2022)
Zaboli S, Alimoradi H, Shams M, J. Therm. Anal. Calorim., 147, 10659 (2022)
Bertsch SS, Groll EA, Garimella SV, Int. J. Heat Mass Transf., 52(7-8), 2110 (2009)
Bennett DL, Davies MW, Hertzler BL, Am. Inst. Chem. Eng. Symposium Ser., 76, 91 (1980)
Edelstein S, Perez A, Chen J, AIChE J., 30(5), 840 (1984)
Fang X, Wu Q, Yuan Y, Int. J. Heat Mass Transf., 107, 972 (2017)
Piasecka M, Int. J. Heat Mass Transf., 81, 114 (2015)
Strąk K, Piasecka M, Int. J. Heat Mass Transf., 158, 119933 (2020)
Paul S, Fernandino M, Dorao CA, Int. J. Heat Mass Transf., 164, 120589 (2021)
Zhang G, Zhang Z, Sun M, Yu Y, Wang J, Cai S, Adv. Eng. Mater., 2101680 (2022)
Chen B, Lu Y, Li W, Dai X, Hua X, Xu J, Wang Z, Zhang C, Gao D, Li Y, Int. J. Heat Mass Transf., 192, 122927 (2022)
Ahmadlou M, Delavar MR, Basiri A, Karimi M, J. Indian Soc. Remote Sensing, 47(1), 53 (2019)
Amirkolaee HA, Arefi H, Ahmadlou M, Raikwar V, Remote Sensing Environ., 274, 113014 (2022)
Azadeh A, Saberi M, Kazem A, Ebrahimipour V, Nourmohammadzadeh A, Saberi Z, Appl. Soft Comput., 13(3), 1478 (2013)
Zhou L, Fan Q, Huang X, Liu Y, Optimization, In press (2022).
Alimoradi H, Shams M, Appl. Therm. Eng., 111, 1039 (2017)
Seong Y, Park C, Choi J, Jang I, Energies, 13(4), 968 (2020)
Wang X, Lyu X, Ocean Eng., 221, 108508 (2021)
Wang Y, Wang H, Zhou B, Fu H, Ocean Eng., 242, 110106 (2021)
Cheung S, Vahaji S, Yeoh G, Tu J, Int. J. Heat Mass Transf., 75, 736 (2014)
Launder BE, Spalding DB, Comput. Meth. Appl. Mech. Eng., 3, 269 (1974)
Ranz WE, Marshall WR, Chem. Eng. Prog., 48(3), 141 (1952)
Ishii M, Zuber N, AIChE J., 25(5), 843 (1979)
Kurul N, Podowski MZ, Multidimensional effects in forced convection subcooled boiling, In: Proceedings of the 9th Heat Transfer Conference, 19-24 (1990).
Lemmert M, Chawla JM, Influence of flow velocity on surface boiling heat transfer coefficient, ISBN 0-12-314450-7, pp. 237-247 (1977).
Tolubinsky VI, Kostanchuk DM, Vapour bubbles groth rate and heat transfer intensity at subcooled water boiling; Heat Transfer 1970.
Cole R, AIChE J., 6(4), 533 (1960)
Bartolomei G, Brantov V, Molochnikov YS, Kharitonov YV, Solodkii V, Batashova G, Mikhailov V, Therm. Eng., 29(3), 132 (1982)
Rouhani SZ, Axelsson E, Int. J. Heat Mass Transf., 13(2), 383 (1970)
Krizhevsky A, Sutskever I, Hinton GE, Commun. ACM, 60(6), 84 (2017)
Svozil D, Kvasnicka V, Pospichal J, Chemometrics Intell. Lab. Syst., 39(1), 43 (1997)
Kingma DP, Jimmy B, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).
Bergles AE, Rohsenow WM, ASME J. Heat Transfer, 1, 365 (1964)
Liu D, Lee PS, Garimella SV, Int. J. Heat Mass Transf., 48(25-26), 5134 (2005)
Basu N, Warrier GR, Dhir VK, J. Heat Transf. -Trans. ASME, 124(4), 717 (2002)
Costigan G, Whalley P, Int. J. Multiph. Flow, 23(2), 263 (1997)
Basu N, Warrier GR, Dhir VK, J. Heat Transf. -Trans. ASME, 127(2), 131 (2005)
Friz W, Physic. Zeitschz., 36, 379 (1935)
Yang L, Guo A, Liu D, Exp. Heat Transf., 29(2), 221 (2016)
Sugrue R, Buongiorno J, McKrell T, Nucl. Eng. Des., 279, 182 (2014)
Yoo J, Estrada-Perez CE, Hassan YA, Int. J. Multiph. Flow, 84, 292 (2016)
Han CY, Griffith P, Int. J. Heat Mass Transf., 8, 905 (1965)
Zeng LZ, Klausner JF, J. Heat Transf. -Trans. ASME, 115, 215 (1993)