ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 26, 2022
Accepted August 10, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Boiling heat transfer characteristics of bionic flower bud structure microchannels

School of Low-carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
qicong@cumt.edu.cn
Korean Journal of Chemical Engineering, December 2022, 39(12), 3246-3260(15), 10.1007/s11814-022-1256-3
downloadDownload PDF

Abstract

In order to improve the boiling heat transfer capacity within the microstructure, a superhydrophilic surface model with a bionic flower bud structure was established and the flow-boiling heat transfer characteristics were simulated. The temperature, velocity and vapor phase distribution contours under different working conditions were obtained. The effects of different flower spacings, superheat degrees and surfaces on boiling heat transfer were discussed. The study found that the droplet has more vaporization cores on the superhydrophilic surface, and the bubbles can effectively destroy the velocity and temperature boundary layers, thereby enhancing the boiling heat transfer ability. The heat transfer area under the narrow flower spacing is larger, and the vaporization core is more, which is more conducive to boiling heat transfer. When the superheat degree is 80 K, the superhydrophilic surface with the flower spacing L=0 μm has the strongest heat transfer ability, which is 1.59 times that of the common surface, and the mass transfer rate is increased by 23.5%.

References

Yang X, Liu J, Wang G, Wei J, Appl. Therm. Eng., 210, 118350 (2022)
Wang Y, Qi C, Zhao R, Wang C, Appl. Therm. Eng., 208, 118258 (2022)
Okonkwo EC, Wole-Osho I, Almanassra IW, Abdullatif YM, Al-Ansari T, J. Therm. Anal. Calorim., 145(6), 2817 (2021)
Karayiannis TG, Mahmoud MM, Appl. Therm. Eng., 115, 1372 (2017)
Jia Y, Huang J, Wang J, Li H, Entropy, 23(11), 1482 (2021)
Xu Z, Wang J, Jia Y, Geng X, Liu Z, Appl. Therm. Eng., 108, 150 (2016)
Jia Y, Yao S, Wang J, Li H, Chem. Ind. Eng. Prog., 40(12), 6423 (2021)
Zhang K, Bai L, Jin H, Lin G, Yao G, Wen D, Appl. Therm. Eng., 202, 117759 (2022)
Rostami S, Afrand M, Shahsavar A, Sheikholeslami M, Kalbasi R, Aghakhani S, Shadloo MS, Oztop HF, Energy, 211, 118698 (2020)
Deb S, Das M, Das DC, Pal S, Das AK, Das R, Int. J. Heat Mass Transf., 170, 120994 (2021)
Deb S, Pal S, Das DC, Das M, Das AK, Das R, Heat Mass Transfer, 56(12), 3273 (2020)
Zhang TY, Mou LW, Zhang YC, Zhang JY, Li JQ, Fan LW, Case Stud. Therm. Eng., 24, 100882 (2021)
Zhang TY, Mou LW, Fan LW, Appl. Therm. Eng., 185, 116453 (2021)
Recinella A, Kandlikar SG, J. Heat Transf. -Trans. ASME, 140(2), 021502 (2018)
Drummond KP, Back D, Sinanis MD, Janes DB, Peroulis D, Weibel JA, Garimella SV, Int. J. Heat Mass Transf., 117, 319 (2018)
Cheng P, Wang G, Quan X, J. Heat Transf. -Trans. ASME, 131(4), 043211 (2009)
Sun H, Lin G, Jin H, Bu X, Cai C, Jia Q, Ma K, Wen D, Renew. Energy, 179, 1179 (2021)
Rasitha TP, Thinaharan C, Vanithakumari SC, Philip J, Colloids Surf. A: Physicochem. Eng. Asp., 636, 128110 (2022)
TP R, Philip J, Appl. Surf. Sci., 585, 152628 (2022)
Vanithakumari SC, Jena G, Sofia S, Thinaharan C, George RP, Philip J, Surf. Coat. Technol., 400, 126074 (2020)
Li W, Zhou K, Li J, Feng Z, Zhu H, Int. J. Heat Mass Transf., 119, 601 (2018)
Zhou W, Han D, Xia G, Appl. Surf. Sci., 591, 153155 (2022)
Tran NG, Chun DM, J. Mater. Process. Technol., 297, 117245 (2021)
Kaya AST, Cengiz U, Prog. Org. Coat., 126, 75 (2019)
Adachi T, Latthe SS, Gosavi SW, Roy N, Suzuki N, Ikari H, Kato K, Katsumata KI, Nakata K, Furudate M, Inoue T, Kondo T, Appl. Surf. Sci., 458, 917 (2018)
Ma Y, Tong J, Zhuang M, Liu J, Cheng S, Pei X, Li H, Sang D, Results Phys., 15, 102628 (2019)
Mahringer A, Hennemann M, Clark T, Bein T, Medina DD, Angew. Chem.-Int. Edit., 60(10), 5519 (2021)
Sato O, Kubo S, Gu ZZ, Accounts Chem. Res., 42(1), 1 (2009)
Deng Y, Zhang G, Bai R, Shen S, Zhou X, Wyman I, J. Membr. Sci., 569, 60 (2019)
Feng Y, Chang F, Hu Z, Li H, Zhao J, Int. J. Therm. Sci., 163, 106814 (2021)
Liao L, Bao R, Liu Z, Heat Mass Transfer, 44(12), 1447 (2008)
Liu R, Liu Z, Int. J. Heat Mass Transf., 143, 118534 (2019)
Vontas K, Andredaki M, Georgoulas A, Miché N, Marengo M, Int. J. Heat Mass Transf., 172, 121133 (2021)
Phan HT, Caney N, Marty P, Colasson S, Gavillet J, CR. Mécanique, 337(5), 251 (2009)
Sia GD, Tan MK, Chen GM, Hung YM, Case Stud. Therm. Eng., 27, 101283 (2021)
Yang G, Liu J, Cheng X, Wang Y, Chu X, Mukherjee S, Terzis A, Schneemann A, Li W, Wu J, Fischer RA, J. Mater. Chem. A, 9(45), 25480 (2021)
Lim YS, Hung YM, Energy Conv. Manag., 244, 114522 (2021)
Ze H, Wu F, Chen S, Gao X, Adv. Mater. Interfaces, 7(14), 2000482 (2020)
Nam Y, Aktinol E, Dhir VK, Ju YS, Int. J. Heat Mass Transf., 54(7-8), 1572 (2011)
Lin CW, Lin YC, Hung TC, Lin MC, Hsu HY, Int. J. Heat Mass Transf., 171, 121058 (2021)
Zhan H, Li S, Jin Z, Zhang G, Wang L, Li Q, Zhang Z, J. Mech. Sci. Technol., 36(2), 1025 (2022)
Ling K, Li ZY, Tao WQ, Numer. Heat Transf. A-Appl., 65(10), 949 (2014)
Vontas K, Andredaki M, Georgoulas A, Miché N, Marengo M, Int. J. Heat Mass Transf., 172, 121133 (2021)
Knudesen M, The kinetic theory of gases, CRC Press. Publications, Boston (1998).
Lide D, CRC handbook of chemistry and physics, CRC Press. Publications, Florida (2003).
Zhang J, Study on enhanced boiling heat transfer characteristics of microstructured heat exchange surfaces, MA thesis, JUST, Zhenjiang (2016).
Lin Y, Luo Y, Li W, Minkowycz WJ, Int. J. Heat Mass Transf., 179, 121739 (2021)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로