Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 11, 2022
Accepted June 27, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
The effect of concentration of silica nanoparticles surface-modified by zwitterionic surfactants for enhanced oil recovery (EOR)
Department of Energy Resources Engineering, Pukyong National University, Busan 48547, Korea 1Center for Climate/Environment Change Prediction Research, Ewha Womans University, Seoul 03760, Korea 2Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea
thlee@kigam.re.kr
Korean Journal of Chemical Engineering, December 2022, 39(12), 3286-3294(9), 10.1007/s11814-022-1216-y
Download PDF
Abstract
We investigated the effects of silica nanoparticle (NP) on nanofluid flooding for enhanced oil recovery. All NPs used in experiments were identically surface modified with PSS-co-MA and a zwitterionic surfactant. In core flooding experiments, the oil production from Berea Sandstone showed an increasing trend as the NP concentration increased within the range of 0.1 to 2.0wt%. This result was closely associated with variance of interfacial tension (IFT) and contact angle (CA). IFT continued to decrease as the NP concentration increased until 2.0 wt%. However, IFT cannot further decrease with an increase in the NP concentration beyond 2.0 wt%, because total interaction energy may be reduced due to the decrease of electrostatic repulsion force by the closer spacing between NPs. When combined with silica nanofluid soaking, the CA of the rock/oil/nanofluids increased with increasing NP concentration; this indicated wettability alteration to a more water-wet condition caused by an enhanced fluid ability to spread silica NPs along the rock surfaces. Because of this effect, the capillary pressure is expected to be sufficiently reduced by nanofluid flooding, compared with brine flooding. However, at higher NP concentration, the NPs caused permeability reduction and an increased pressure drop attributable to the residual NPs in rock pores. This result implies additional oil recovery attributable to improved sweep efficiency related to the log jamming phenomenon caused by the residual NPs, as well as the IFT reduction and wettability alteration, thus leading to enhanced oil recovery.
References
Rezk MY, Allam NK, Ind. Eng. Chem. Res., 58, 16287 (2019)
Li S, Hendraningrat L, Torsaeter O, The international petroleum technology conference, Beijing, China, March 26-28 (2013).
Rudyak VY, Krasnolutskii SL, Phys. Lett. A, 378, 1845 (2014)
Mishra PC, Mukherjee S, Nayak SK, Panda A, Int. Nano Lett., 4, 109 (2014)
Metin C, Bonnecaze RT, Nguyen QP, SPE Res. Eval. Eng., 16, 327 (2013)
Fan H, Striolo A, Phys. Rev. E, 86, 051610 (2011)
Betancur S, Giraldo LJ, Carrasco-Marín F, Riazi M, Manrique EJ, Quintero H, García HA, Franco-Ariza CA, Cortés FB, ACS Omega, 4, 16171 (2019)
de Lara LS, Michelon MF, Metin CO, Nguyen QP, Miranda CR, J. Chem. Phys., 136, 164702 (2012)
Bila A, Torsaeter O, Energies, 13, 5720 (2020)
Sun X, Zhang Y, Chen G, Gai Z, Energies, 10, 345 (2017)
Hu Z, Azmi SM, Raza G, Glover PWJ, Wen D, Energy Fuels, 30, 2791 (2016)
Son HA, Ahn T, Appl. Sci., 11, 524 (2021)
Peng B, Zhang L, Luo J, Wang P, Ding B, Zeng M, Cheng Z, RSC Adv., 7, 32246 (2017)
Yuan B, Wang W, Moghanloo RG, Su Y, Wang K, Jiang M, Energy Fuels, 31, 795 (2017)
Ju B, Fan T, Powder Technol., 192, 195 (2009)
Hendraningrat L, Li S, Torsaeter O, The SPE russian oil and gas exploration and production technical conference and exhibition, Moscow, Russia, 16-18 October (2012).
Ju B, Fan T, Li Z, J. Pet. Sci. Eng., 86, 206 (2012)
Li K, Wang D, Jiang S, Oil Gas Sci. Technol., 73, 37 (2018)
Lim S, Wasan D, J. Colloid Interface Sci., 500, 96 (2017)
Eltoum H, Yang YL, Hou JR, Pet. Sci. Technol., 18, 136 (2021)
Choi SK, Son HA, Kim HT, Kim JW, Energy Fuels, 31, 7777 (2017)
Zhang H, Nikolov A, Wasan D, Energy Fuels, 28, 3002 (2014)
Wasan DT, Nikolov AD, Nature, 423, 156 (2003)
Nikolov A, Wu P, Wasan D, Adv. Colloid Interface Sci., 264, 1 (2019)
Zhou J, Wang Y, Geng J, Jing D, Phys. Fluids, 30, 072107 (2018)
Yuan L, Zhang Y, Dehghanpour H, Energy Fuels, 35, 7787 (2021)
Bhauiyan MHU, Saidur R, Amalina MA, Mostafizur RM, Islam AKMS, Procedia Eng., 105, 431 (2015)
Radiom M, Yang C, Chan WK, The international society for optical engineering, Singapore, 18-20 April (2010).
Zhu BJ, Zhao WL, Li JK, Guan YX, Li DD, Mater. Sci. Forum, 688, 266 (2011)
Tanvir S, Qiao L, Nanoscale Res. Lett., 7, 1 (2012)
Son HA, Lee TH, Appl. Sci., 11, 7184 (2021)
Zhang T, Murphy MJ, Yu H, Bagaria HG, Yoon KY, Nielson BM, Bielawski CW, Johnston KP, Huh C, Bryant SL, SPE J., 20, 667 (2015)
Yu H, He Y, Li P, Li S, Zhang T, Rodriguez-Pin E, Du S, Wang C, Cheng S, Bielawski CW, Sci. Rep., 5, 8702 (2015)
Son HA, Yoon KY, Lee GJ, Cho JW, Choi SK, Kim JW, Im KC, Kim HT, Lee KS, Sung WM, J. Pet. Sci. Eng., 126, 152 (2015)
Yoon KY, Son HA, Choi SK, Kim JW, Sung WM, Kim HT, Energy Fuels, 30, 2628 (2016)
Matter F, Barron ALL, Niederberger M, Nano Today, 30, 100827 (2020)
Reincke F, Hickey SG, Kegel WK, Vanmaekelbergh D, Angew. Chem.-Int. Edit., 43, 458 (2004)
Qi L, Song C, Wang T, Li Q, Hiraski GJ, Verduzco R, Langmuir, 34, 652 (2018)
Qi L, ShamsiJazeyi H, Ruan G, Mann JA, Lin YH, Song C, Ma Y, Yang L, Tour JM, Hirasaki GJ, Verduzco R, Energy Fuels, 31, 1339 (2017)
Moosavi M, Goharshadi EK, Youssefi A, J. Heat Transf. -Trans. ASME, 31, 599 (2010)
Chengara A, Nikolov A, Wasan DT, Trokhymchuk A, J. Colloid Interface Sci., 280, 192 (2005)
Shi JQ, Xue Z, Durucan S, Energy Procedia, 4, 5001 (2011)
Brown HW, Petroleum Trans. AIME, 192, 67 (1951)
Ahmed T, Reservoir engineering handbook (10th ed.), Gulf Professional Publishing, Elsevier (2010).
Duan F, Kwek D, Crivoi A, Nanoscale Res. Lett., 6, 1 (2011)
Lake LW, Enhanced oil recovery, United Sates, Prentice Hall (1989).
Zhang T, Roberts M, Bryant SL, Huh C, The SPE International Symposium Oilfield Chemistry, Woodlands, TX, April 20- 22 (2009).
Li S, Hendraningrat L, Torsaeter O, The international petroleum technology conference, Beijing, China, March 26-28 (2013).
Rudyak VY, Krasnolutskii SL, Phys. Lett. A, 378, 1845 (2014)
Mishra PC, Mukherjee S, Nayak SK, Panda A, Int. Nano Lett., 4, 109 (2014)
Metin C, Bonnecaze RT, Nguyen QP, SPE Res. Eval. Eng., 16, 327 (2013)
Fan H, Striolo A, Phys. Rev. E, 86, 051610 (2011)
Betancur S, Giraldo LJ, Carrasco-Marín F, Riazi M, Manrique EJ, Quintero H, García HA, Franco-Ariza CA, Cortés FB, ACS Omega, 4, 16171 (2019)
de Lara LS, Michelon MF, Metin CO, Nguyen QP, Miranda CR, J. Chem. Phys., 136, 164702 (2012)
Bila A, Torsaeter O, Energies, 13, 5720 (2020)
Sun X, Zhang Y, Chen G, Gai Z, Energies, 10, 345 (2017)
Hu Z, Azmi SM, Raza G, Glover PWJ, Wen D, Energy Fuels, 30, 2791 (2016)
Son HA, Ahn T, Appl. Sci., 11, 524 (2021)
Peng B, Zhang L, Luo J, Wang P, Ding B, Zeng M, Cheng Z, RSC Adv., 7, 32246 (2017)
Yuan B, Wang W, Moghanloo RG, Su Y, Wang K, Jiang M, Energy Fuels, 31, 795 (2017)
Ju B, Fan T, Powder Technol., 192, 195 (2009)
Hendraningrat L, Li S, Torsaeter O, The SPE russian oil and gas exploration and production technical conference and exhibition, Moscow, Russia, 16-18 October (2012).
Ju B, Fan T, Li Z, J. Pet. Sci. Eng., 86, 206 (2012)
Li K, Wang D, Jiang S, Oil Gas Sci. Technol., 73, 37 (2018)
Lim S, Wasan D, J. Colloid Interface Sci., 500, 96 (2017)
Eltoum H, Yang YL, Hou JR, Pet. Sci. Technol., 18, 136 (2021)
Choi SK, Son HA, Kim HT, Kim JW, Energy Fuels, 31, 7777 (2017)
Zhang H, Nikolov A, Wasan D, Energy Fuels, 28, 3002 (2014)
Wasan DT, Nikolov AD, Nature, 423, 156 (2003)
Nikolov A, Wu P, Wasan D, Adv. Colloid Interface Sci., 264, 1 (2019)
Zhou J, Wang Y, Geng J, Jing D, Phys. Fluids, 30, 072107 (2018)
Yuan L, Zhang Y, Dehghanpour H, Energy Fuels, 35, 7787 (2021)
Bhauiyan MHU, Saidur R, Amalina MA, Mostafizur RM, Islam AKMS, Procedia Eng., 105, 431 (2015)
Radiom M, Yang C, Chan WK, The international society for optical engineering, Singapore, 18-20 April (2010).
Zhu BJ, Zhao WL, Li JK, Guan YX, Li DD, Mater. Sci. Forum, 688, 266 (2011)
Tanvir S, Qiao L, Nanoscale Res. Lett., 7, 1 (2012)
Son HA, Lee TH, Appl. Sci., 11, 7184 (2021)
Zhang T, Murphy MJ, Yu H, Bagaria HG, Yoon KY, Nielson BM, Bielawski CW, Johnston KP, Huh C, Bryant SL, SPE J., 20, 667 (2015)
Yu H, He Y, Li P, Li S, Zhang T, Rodriguez-Pin E, Du S, Wang C, Cheng S, Bielawski CW, Sci. Rep., 5, 8702 (2015)
Son HA, Yoon KY, Lee GJ, Cho JW, Choi SK, Kim JW, Im KC, Kim HT, Lee KS, Sung WM, J. Pet. Sci. Eng., 126, 152 (2015)
Yoon KY, Son HA, Choi SK, Kim JW, Sung WM, Kim HT, Energy Fuels, 30, 2628 (2016)
Matter F, Barron ALL, Niederberger M, Nano Today, 30, 100827 (2020)
Reincke F, Hickey SG, Kegel WK, Vanmaekelbergh D, Angew. Chem.-Int. Edit., 43, 458 (2004)
Qi L, Song C, Wang T, Li Q, Hiraski GJ, Verduzco R, Langmuir, 34, 652 (2018)
Qi L, ShamsiJazeyi H, Ruan G, Mann JA, Lin YH, Song C, Ma Y, Yang L, Tour JM, Hirasaki GJ, Verduzco R, Energy Fuels, 31, 1339 (2017)
Moosavi M, Goharshadi EK, Youssefi A, J. Heat Transf. -Trans. ASME, 31, 599 (2010)
Chengara A, Nikolov A, Wasan DT, Trokhymchuk A, J. Colloid Interface Sci., 280, 192 (2005)
Shi JQ, Xue Z, Durucan S, Energy Procedia, 4, 5001 (2011)
Brown HW, Petroleum Trans. AIME, 192, 67 (1951)
Ahmed T, Reservoir engineering handbook (10th ed.), Gulf Professional Publishing, Elsevier (2010).
Duan F, Kwek D, Crivoi A, Nanoscale Res. Lett., 6, 1 (2011)
Lake LW, Enhanced oil recovery, United Sates, Prentice Hall (1989).
Zhang T, Roberts M, Bryant SL, Huh C, The SPE International Symposium Oilfield Chemistry, Woodlands, TX, April 20- 22 (2009).