Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 17, 2022
Accepted June 16, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Cell performance and polarization analysis on different operating conditions in anion exchange membrane-unitized regenerative fuel cells (AEM-URFCs)
Department of Chemical Engineering, Kunsan National University, Jeonbuk 54150, Korea 1Department of Chemistry, Kunsan National University, Jeonbuk 54150, Korea 2Department of Material Science and Engineering, Kunsan National University, Jeonbuk 54150, Korea 3Fuel Cell Regional Innovation Center, Woosuk University, Jeonbuk 55315, Korea
jpshim@kunsan.ac.kr
Korean Journal of Chemical Engineering, December 2022, 39(12), 3295-3304(10), 10.1007/s11814-022-1209-x
Download PDF
Abstract
Several electrode parameters and operating conditions were investigated on the cell performance of anion exchange membrane-unitized regenerative fuel cell (AEM-URFC). The AEM-URFC’s performance increased with increasing the ionomer and catalyst contents on the electrode up to an optimum amount and then decreased due to the blockage of mesopores on the catalyst layers. The AEM-URFC with optimal ionomer and catalyst loaded showed the maximum current (255.0mA/cm2) and power (127.5mW/cm2) density at 0.50 V for fuel cell mode at 60 ℃. Also, three different kinds of commercial AEMs were tested in URFC. The catalyst for the bifunctional oxygen electrode had a pronounced influence on the cell performance of AEM-URFC. Ir black showed the highest WE performance than other precious catalysts (Pt/C, PtRu black, and IrO2), but lower performance in FC mode than Pt/C and PtRu catalysts. The optimized AEM-URFC had 48.30% round trip efficiency, which is comparable or superior to the results reported in the literature.
Keywords
References
Sarapuu A, Kibena-Põldsepp E, Borgheib M, Tammeveski K, J. Mater. Chem. A, 6, 776 (2018)
Yim SD, Lee WY, Yoon YG, Sohn YJ, Park GG, Yang TH, Kim CS, Electrochim. Acta, 50, 713 (2004)
Pettersson J, Ramsey B, Harrison D, J. Power Sources, 157, 28 (2006)
Dhar HP, J. Appl. Electrochem., 23, 32 (1993)
Wang Y, Leung DYC, Xuan J, Wang H, Renew. Sust. Energ. Rev., 65, 961 (2016)
Omrani R, Shabani B, Int. J. Hydrog. Energy, 44, 3834 (2019)
Wu X, Scott K, J. Mater. Chem., 21, 12344 (2011)
Xiao L, Zhang S, Pan J, Yang C, He M, Zhuang L, Lu J, Energy Environ. Sci., 5, 7869 (2012)
Gottesfeld S, Dekel DR, Page M, Bae C, Yan Y, Zelenay P, Kim YS, J. Power Sources, 375, 170 (2018)
Lu S, Pan J, Huang A, Zhuang L, Lu J, Proc. Natl. Acad. Sci. U.S.A., 105, 20611 (2008)
Dresp S, Luo F, Schmack R, Kühl S, Gliech M, Strasser P, Energy Environ. Sci., 9, 2020 (2016)
Wu X, Scott K, J. Power Sources, 214, 124 (2012)
Li G, Pickup PG, J. Electrochem. Soc., 150, C745 (2003)
Mamlouk M, Scott K, Horsfall JA, Williams C, Int. J. Hydrog. Energy, 36, 7191 (2011)
Yang D, Yu H, Li G, Zhao Y, Liu Y, Zhang C, Song W, Shao Z, J. Power Sources, 267, 39 (2014)
Paddison SJ, Promislow KS, Device and materials in PEM fuel cells, Springer Science & Business Media, New York (2008).
Ünlü M, Zhou J, Anestis-Richard I, Kim H, Kohl PA, Electrochim. Acta, 56, 4439 (2011)
Carmo M, Doubek G, Sekol RC, Linardi M, Taylor AD, J. Power Sources, 230, 169 (2013)
John RV, Robert CTS, Graham LW, Yanling C, J. Phys. Chem. B, 110(42), 21041 (2006)
Park JE, Kang SY, Oh SH, Kim JK, Lim MS, Ahn CY, Cho YH, Sung YE, Electrochim. Acta, 295, 99 (2019)
Gode P, Jaouen F, Lindbergh G, Lundblad A, Sundholm G, Electrochim. Acta, 48, 4175 (2003)
Cho MK, Park HY, Choe S, Yoo SJ, Kim JY, Kim HJ, Henkensmeier D, Lee SY, Sung YE, Park HS, Jang JH, J. Power Sources, 347, 283 (2017)
Li YS, Zhao TS, Yang WW, Int. J. Hydrog. Energy, 35, 5656 (2010)
Ahn SH, Lee BS, Choi I, Yoo SJ, Kim HJ, Cho EA, Henkensmeier D, Nam SW, Kim SK, Jang JH, Appl. Catal. B: Environ., 154-155, 197 (2014)
Chen C, Tse YLS, Lindberg GE, Knight C, Voth GA, J. Am. Chem. Soc., 138, 991 (2016)
Maurya S, Shin SH, Kim Y, Moon SH, J. RSC Adv., 5, 37206 (2015)
Li D, Park EJ, Zhu W, Shi Q, Zhou Y, Tian H, Lin Y, Sherov A, Zulevi B, Baca ED, Fujimoto C, Chung HT, Kim YS, J. Nat. Energy, 5, 378 (2020)
Cho MK, Park HY, Lee HJ, Kim HJ, Lim A, Henkensmeier D, Yoo SJ, Kim JY, Lee SY, Park HS, Jang JH, J. Power Sources, 382, 22 (2018)
Yang D, Yu H, Li G, Song W, Liu Y, Shao Z, Chin. J. Catal., 35, 1091 (2014)
Zhang Y, Wang C, Wan N, Mao Z, Int. J. Hydrog. Energy, 32, 400 (2007)
Yim SD, Park GG, Sohn YJ, Lee WY, Yoon YG, Yang TH, Um S, Yu SP, Kim CS, Int. J. Hydrog. Energy, 30, 1345 (2005)
Jang MJ, Won MS, Lee KH, Choi SM, J. Korean Inst. Surf. Eng., 49, 159 (2016)
Antolini E, Appl. Catal. B: Environ., 88, 1 (2009)
Ramli ZAC, Kamarudin SK, J. Nanoscale Res. Lett., 13, 410 (2018)
Gayen P, Saha S, Liu X, Sharma K, Ramani VK, PNAS, 118(40), e2107205 (2021)
Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Luding A, Mayrhofer KJJ, Catal. Today, 262, 170 (2016)
Zhuo X, Sui S, Zhang J, Int. J. Hydrog. Energy, 38, 4792 (2013)
Ng JWD, Tang M, Jaramillo TF, J. Energy Environ. Sci., 7, 2017 (2014)
Ng JWD, Gorlin Y, Hatsukade T, Jaramillo TF, Adv. Energy Mater., 3, 1545 (2013)
Wu X, Scott K, J. Power Sources, 206, 14 (2012)
Zhong H, Tian R, Gong X, Li D, Tang P, Alonso-Vante N, Feng Y, J. Power Sources, 361, 21 (2017)
Campos-Roldán CA, Zhong H, Unni SM, de G. González-Huerta R, Feng Y, Alonso-Vante N, ACS Appl. Energy Mater., 3(8), 7397 (2020)
Yim SD, Lee WY, Yoon YG, Sohn YJ, Park GG, Yang TH, Kim CS, Electrochim. Acta, 50, 713 (2004)
Pettersson J, Ramsey B, Harrison D, J. Power Sources, 157, 28 (2006)
Dhar HP, J. Appl. Electrochem., 23, 32 (1993)
Wang Y, Leung DYC, Xuan J, Wang H, Renew. Sust. Energ. Rev., 65, 961 (2016)
Omrani R, Shabani B, Int. J. Hydrog. Energy, 44, 3834 (2019)
Wu X, Scott K, J. Mater. Chem., 21, 12344 (2011)
Xiao L, Zhang S, Pan J, Yang C, He M, Zhuang L, Lu J, Energy Environ. Sci., 5, 7869 (2012)
Gottesfeld S, Dekel DR, Page M, Bae C, Yan Y, Zelenay P, Kim YS, J. Power Sources, 375, 170 (2018)
Lu S, Pan J, Huang A, Zhuang L, Lu J, Proc. Natl. Acad. Sci. U.S.A., 105, 20611 (2008)
Dresp S, Luo F, Schmack R, Kühl S, Gliech M, Strasser P, Energy Environ. Sci., 9, 2020 (2016)
Wu X, Scott K, J. Power Sources, 214, 124 (2012)
Li G, Pickup PG, J. Electrochem. Soc., 150, C745 (2003)
Mamlouk M, Scott K, Horsfall JA, Williams C, Int. J. Hydrog. Energy, 36, 7191 (2011)
Yang D, Yu H, Li G, Zhao Y, Liu Y, Zhang C, Song W, Shao Z, J. Power Sources, 267, 39 (2014)
Paddison SJ, Promislow KS, Device and materials in PEM fuel cells, Springer Science & Business Media, New York (2008).
Ünlü M, Zhou J, Anestis-Richard I, Kim H, Kohl PA, Electrochim. Acta, 56, 4439 (2011)
Carmo M, Doubek G, Sekol RC, Linardi M, Taylor AD, J. Power Sources, 230, 169 (2013)
John RV, Robert CTS, Graham LW, Yanling C, J. Phys. Chem. B, 110(42), 21041 (2006)
Park JE, Kang SY, Oh SH, Kim JK, Lim MS, Ahn CY, Cho YH, Sung YE, Electrochim. Acta, 295, 99 (2019)
Gode P, Jaouen F, Lindbergh G, Lundblad A, Sundholm G, Electrochim. Acta, 48, 4175 (2003)
Cho MK, Park HY, Choe S, Yoo SJ, Kim JY, Kim HJ, Henkensmeier D, Lee SY, Sung YE, Park HS, Jang JH, J. Power Sources, 347, 283 (2017)
Li YS, Zhao TS, Yang WW, Int. J. Hydrog. Energy, 35, 5656 (2010)
Ahn SH, Lee BS, Choi I, Yoo SJ, Kim HJ, Cho EA, Henkensmeier D, Nam SW, Kim SK, Jang JH, Appl. Catal. B: Environ., 154-155, 197 (2014)
Chen C, Tse YLS, Lindberg GE, Knight C, Voth GA, J. Am. Chem. Soc., 138, 991 (2016)
Maurya S, Shin SH, Kim Y, Moon SH, J. RSC Adv., 5, 37206 (2015)
Li D, Park EJ, Zhu W, Shi Q, Zhou Y, Tian H, Lin Y, Sherov A, Zulevi B, Baca ED, Fujimoto C, Chung HT, Kim YS, J. Nat. Energy, 5, 378 (2020)
Cho MK, Park HY, Lee HJ, Kim HJ, Lim A, Henkensmeier D, Yoo SJ, Kim JY, Lee SY, Park HS, Jang JH, J. Power Sources, 382, 22 (2018)
Yang D, Yu H, Li G, Song W, Liu Y, Shao Z, Chin. J. Catal., 35, 1091 (2014)
Zhang Y, Wang C, Wan N, Mao Z, Int. J. Hydrog. Energy, 32, 400 (2007)
Yim SD, Park GG, Sohn YJ, Lee WY, Yoon YG, Yang TH, Um S, Yu SP, Kim CS, Int. J. Hydrog. Energy, 30, 1345 (2005)
Jang MJ, Won MS, Lee KH, Choi SM, J. Korean Inst. Surf. Eng., 49, 159 (2016)
Antolini E, Appl. Catal. B: Environ., 88, 1 (2009)
Ramli ZAC, Kamarudin SK, J. Nanoscale Res. Lett., 13, 410 (2018)
Gayen P, Saha S, Liu X, Sharma K, Ramani VK, PNAS, 118(40), e2107205 (2021)
Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Luding A, Mayrhofer KJJ, Catal. Today, 262, 170 (2016)
Zhuo X, Sui S, Zhang J, Int. J. Hydrog. Energy, 38, 4792 (2013)
Ng JWD, Tang M, Jaramillo TF, J. Energy Environ. Sci., 7, 2017 (2014)
Ng JWD, Gorlin Y, Hatsukade T, Jaramillo TF, Adv. Energy Mater., 3, 1545 (2013)
Wu X, Scott K, J. Power Sources, 206, 14 (2012)
Zhong H, Tian R, Gong X, Li D, Tang P, Alonso-Vante N, Feng Y, J. Power Sources, 361, 21 (2017)
Campos-Roldán CA, Zhong H, Unni SM, de G. González-Huerta R, Feng Y, Alonso-Vante N, ACS Appl. Energy Mater., 3(8), 7397 (2020)