Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 31, 2022
Accepted August 10, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Sb-Fe bimetallic non-aqueous phase desulfurizer for efficient absorption of hydrogen sulfide: A combined experimental and DFT study
School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20 Daxuecheng East Road, Shapingba District, 401331 Chongqing, China 1Sinopec Southwest Oil and Gas Branch, Chengdu, 611930 Sichuan, China
2020205053@cqust.edu.cn
Korean Journal of Chemical Engineering, December 2022, 39(12), 3305-3314(10), 10.1007/s11814-022-1253-6
Download PDF
Abstract
A non-aqueous phase (Sb/Fe/NMP) desulfurization system for the removal of hydrogen sulfide from natural gas was constructed by introducing SbCl3 and FeCl3 in a specific ratio into N-methylpyrrolidone (NMP). The desulfurizing agent and its sulfur product were characterized, and the absorption pattern of H2S by the system was investigated by static desulfurization experiments. The results indicate that the desulfurizer’s sulfur capacity can reach 16 g/L at room temperature and pressure, and that adding the optimum amount of water and appropriate temperature increase can assist to increase desulfurization efficiency. The system maintained a sulfur capacity level of more than 90% of the initial sulfur capacity after five consecutive desulfurization-regeneration cycles. XRD and XPS spectrogram revealed that the regenerated solid product was high purity sulfur. Sb3+ is a key component to ensure the effective absorption of H2S. The presence of a moderate amount of Fe3+ can oxidize and absorb small amounts of H2S and promote the oxidative regeneration of the system. In addition, we combined the obtained experimental data with density flooding theory (DFT) theoretical calculations to show that the effective coordination of Sb(III) with HS- in the NMP environment is the main reason for the effective absorption of H2S by the desulfurizer. NMP is not involved in the coordination absorption process of hydrogen sulfide.
Keywords
References
Chen M, Cui Q, Pet. Eng. Construction, 36, 1 (2010)
Liu Y, Wang Y, Energy Fuels, 33, 10812 (2019)
Wu D, Zhou J, Yu T, Wu S, Yang Y, Chin. J. Environ. Eng., 7, 3153 (2013)
Zhao Y, Wang J, Liu Y, Zheng P, Hu B, Environ. Res., 200, 111423 (2021)
Zeng X, Xiao X, Chen J, Wang H, Appl. Catal. B: Environ., 248, 573 (2019)
Liu F, Yu J, Qazi AB, Zhang L, Liu XK, Environ. Sci. Technol., 55, 1419 (2021)
Guo Z, Zhang T, Liu T, Du J, Jia B, Gao S, Jiang Y, Environ. Sci. Technol., 49, 5697 (2015)
Patah A, Bchle J, Grampp G, J. Electrochem. Soc., 166, H635 (2019)
Hua G, Zhang Q, Mcmanus D, Slawin AMZ, Woollins JD, Dalton Trans., 9, 1147 (2006)
Yang JH, Korean J. Chem. Eng., 38, 674 (2021)
Li X, Han J, Liu Y, Dou Z, Zhang TA, Sep. Purif. Technol., 281, 119849 (2022)
Lee C, Yang W, Parr RG, Phys. Rev. B, 37, 785 (1988)
Becke AD, Chem. Phys., 98, 5648 (1993)
Weigend F, Ahlrichs R, Phys. Chem. Chem. Phys., 7, 3297 (2005)
Weigend F, Chem. Phys., 8, 1057 (2006)
Frisch MJ, Trucks GW, Schlegel HB, Gaussian Rev. D.01, Gaussian, Inc., Wallingford CT (2013).
Marenich AV, Cramer CJ, Truhlar DG, J. Phys. Chem. B, 113, 6378 (2009)
Grimme S, Ehrlich S, Goerigk L, J. Comput. Chem., 32, 1456 (2011)
Zhao Y, Schultz NE, Truhlar DG, J. Chem. Theory Comput., 2, 364 (2006)
Becke AD, J. Chem. Phys., 92, 5397 (1990)
Lu T, Chen F, J. Comput. Chem., 33, 580 (2012)
Audran G, Bagryanskaya EG, Marque S, Polymer, 12, 1481 (2020)
Li FT, Wu B, Liu RH, Chem. Eng. J., 274, 192 (2015)
Ou YJ, Wang XM, Li CL, IOP Conference Series Earth Environmental Science 2017, 100, 12036 (2015)
Zhong G, Mei G, Jia Y, Adv. Mater. Res., 549, 126 (2012)
Cao LD, Zeng SJ, Zhang XP, Zhang SJ, J. Chem. Eng., 66, 1 (2015)
Wang DX, Ru JJ, Huang HM, Wet Metallurgy, 40, 4 (2021)
Liu X, Wang R, Fuel Process. Technol., 160, 78 (2017)
Jalili AH, Mehrabi M, Zoghi AT, Fluid Phase Equilib., 453, 1 (2017)
Ding K, Zannat F, Morris CJ, Brennessel WW, Holland PL, J. Org. Chem., 694, 4204 (2009)
Amoroso D, Picozzi S, Phys. Rev. B, 93(21), 214106 (2016)
Zhong GQ, Gu M, Jia YQ, Adv. Mater. Res., 549, 126 (2012)
Xu H, Lee D, He J, Phys. Rev. B, 78, 174103 (2008)
Yang ZY, Liu XM, Yang WD, J. Anal. Testing, 3, 19 (1992)
Han MJ, He JY, Sun W, Li S, Yu H, Trans. Nonferrous Metals Soc. China, 1, 1 (2022)
Lo R, Manna D, Lamanec M, Dračínský M, Bouř P, Wu T, Kaleta J, Hobza P, Nat. Commun., 13, 1 (2022)
Hampton MA, Plackowski C, Nguyen AV, Langmuir, 27, 4190 (2011)
Liu Y, Wang Y, Energy Fuels, 33, 10812 (2019)
Wu D, Zhou J, Yu T, Wu S, Yang Y, Chin. J. Environ. Eng., 7, 3153 (2013)
Zhao Y, Wang J, Liu Y, Zheng P, Hu B, Environ. Res., 200, 111423 (2021)
Zeng X, Xiao X, Chen J, Wang H, Appl. Catal. B: Environ., 248, 573 (2019)
Liu F, Yu J, Qazi AB, Zhang L, Liu XK, Environ. Sci. Technol., 55, 1419 (2021)
Guo Z, Zhang T, Liu T, Du J, Jia B, Gao S, Jiang Y, Environ. Sci. Technol., 49, 5697 (2015)
Patah A, Bchle J, Grampp G, J. Electrochem. Soc., 166, H635 (2019)
Hua G, Zhang Q, Mcmanus D, Slawin AMZ, Woollins JD, Dalton Trans., 9, 1147 (2006)
Yang JH, Korean J. Chem. Eng., 38, 674 (2021)
Li X, Han J, Liu Y, Dou Z, Zhang TA, Sep. Purif. Technol., 281, 119849 (2022)
Lee C, Yang W, Parr RG, Phys. Rev. B, 37, 785 (1988)
Becke AD, Chem. Phys., 98, 5648 (1993)
Weigend F, Ahlrichs R, Phys. Chem. Chem. Phys., 7, 3297 (2005)
Weigend F, Chem. Phys., 8, 1057 (2006)
Frisch MJ, Trucks GW, Schlegel HB, Gaussian Rev. D.01, Gaussian, Inc., Wallingford CT (2013).
Marenich AV, Cramer CJ, Truhlar DG, J. Phys. Chem. B, 113, 6378 (2009)
Grimme S, Ehrlich S, Goerigk L, J. Comput. Chem., 32, 1456 (2011)
Zhao Y, Schultz NE, Truhlar DG, J. Chem. Theory Comput., 2, 364 (2006)
Becke AD, J. Chem. Phys., 92, 5397 (1990)
Lu T, Chen F, J. Comput. Chem., 33, 580 (2012)
Audran G, Bagryanskaya EG, Marque S, Polymer, 12, 1481 (2020)
Li FT, Wu B, Liu RH, Chem. Eng. J., 274, 192 (2015)
Ou YJ, Wang XM, Li CL, IOP Conference Series Earth Environmental Science 2017, 100, 12036 (2015)
Zhong G, Mei G, Jia Y, Adv. Mater. Res., 549, 126 (2012)
Cao LD, Zeng SJ, Zhang XP, Zhang SJ, J. Chem. Eng., 66, 1 (2015)
Wang DX, Ru JJ, Huang HM, Wet Metallurgy, 40, 4 (2021)
Liu X, Wang R, Fuel Process. Technol., 160, 78 (2017)
Jalili AH, Mehrabi M, Zoghi AT, Fluid Phase Equilib., 453, 1 (2017)
Ding K, Zannat F, Morris CJ, Brennessel WW, Holland PL, J. Org. Chem., 694, 4204 (2009)
Amoroso D, Picozzi S, Phys. Rev. B, 93(21), 214106 (2016)
Zhong GQ, Gu M, Jia YQ, Adv. Mater. Res., 549, 126 (2012)
Xu H, Lee D, He J, Phys. Rev. B, 78, 174103 (2008)
Yang ZY, Liu XM, Yang WD, J. Anal. Testing, 3, 19 (1992)
Han MJ, He JY, Sun W, Li S, Yu H, Trans. Nonferrous Metals Soc. China, 1, 1 (2022)
Lo R, Manna D, Lamanec M, Dračínský M, Bouř P, Wu T, Kaleta J, Hobza P, Nat. Commun., 13, 1 (2022)
Hampton MA, Plackowski C, Nguyen AV, Langmuir, 27, 4190 (2011)