ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 11, 2022
Accepted April 2, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Visible light photocatalytic activity of TiO2 with carbon-fluorine heteroatoms simultaneously introduced by CF4 plasma

1Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea 2Institute of Carbon Fusion Technology (InCFT), Chungnam National University, Daejeon 34134, Korea
Korean Journal of Chemical Engineering, December 2022, 39(12), 3334-3342(9), 10.1007/s11814-022-1128-x
downloadDownload PDF

Abstract

CF4 plasma treatment is performed on commercial TiO2 to improve the photocatalytic efficiency. The CF4 plasma treatment is a facile and fast method for simultaneous introduction of carbon and fluorine atoms onto TiO2. Photodegradation of rhodamine B, methyl orange, and methylene blue is carried out under solar light irradiation to determine its CF4 plasma treatment effect. The dye removal of commercial TiO2 to rhodamine B, methyl orange, and methylene blue is 60.0, 18.9, and 49.2%, respectively, whereas TiO2 treated with CF4 plasma for 50 min is 93.5, 71.0, and 88.6% for rhodamine B, methyl orange, and methylene blue, respectively. In addition, the photodegradation rate constants of TiO2 treated with CF4 plasma for 50 min were 0.0135, 0.0083, and 0.0129min-1 for rhodamine B, methyl orange, and methylene blue, respectively, which are up to 7.5 times higher than that of untreated TiO2 (0.0049, 0.0011, and 0.0039min-1). This improvement is attributed to the increase in oxygen vacancies by the introduction of carbon atoms into TiO2 using CF4 plasma treatment. In addition, the F- ions physically adsorbed to the TiO2 surface promote the formation of hydroxyl free radicals, enabling effective decomposition of various dyes.

References

Chen D, Cheng Y, Zhou N, Chen P, Wang Y, Li K, Huo S, Cheng P, Peng P, Zhang R, J. Clean Prod., 268, 121725 (2020)
MiarAlipour S, Friedmann D, Scott J, Amal R, J. Hazard. Mater., 341, 404 (2018)
An HR, Park SY, Huh JY, Kim H, Lee YC, Lee YB, Hong YC, Lee HU, Appl. Catal. B: Environ., 211, 126 (2017)
Ling Y, Li J, Wu J, Liu H, Mao X, Qi Y, Ma Q, Liu Q, Qiao Z, Chu W, J. Chem. Eng., 39, 343 (2022)
Kazeem TS, Zubair M, Daud M, Mu’azu ND, Al-Harthi MA, J. Chem. Eng., 36, 1057 (2019)
Hossienzadeh K, Maleki A, Daraei H, Safari M, Pawar R, Lee SM, J. Chem. Eng., 36, 1360 (2019)
Sridhar A, Ponnuchamy M, Kapoor A, Prabhakar S, J. Hazard. Mater., 424, 127432 (2022)
Kang DH, Jo H, Jung MJ, Kim KH, Lee YS, Carbon Lett., 27, 64 (2018)
Lee JS, You KH, Park CB, Adv. Mater., 24, 1084 (2012)
Baruah M, Ezung SL, Supong A, Bhomick PC, Kumar S, Sinha D, J. Chem. Eng., 38, 1277 (2021)
Zafar M, Yun JY, Kim DH, J. Chem. Eng., 35, 567 (2018)
Jung JY, Kim JH, Lee YS, J. Nanosci. Nanotechnol., 16, 4498 (2016)
Jung MJ, Kim Y, Lee YS, J. Ind. Eng. Chem., 47, 187 (2017)
Kim JH, Nishimura F, Yonezawa S, Takashima M, J. Fluor. Chem., 144, 165 (2012)
Teng F, Zhang G, Wang Y, Gao C, Chen L, Zhang P, Zhang Z, Xie E, Appl. Surf. Sci., 320, 703 (2014)
Cui GW, Wang WI, Ma MY, Zhang M, Xia XY, Han FY, Shi XF, Zhao YQ, Dong YB, Tang B, Chem. Commun., 49, 6415 (2013)
Lin YT, Weng CH, Lin YH, Shiesh CC, Chen FY, Sep. Purif. Technol., 116, 114 (2013)
Huang DG, Liao SJ, Liu JM, Dang Z, Petrik L, J. Photochem. Photobiol. A-Chem., 184, 282 (2006)
Lee R, Lim C, Kim MJ, Lee YS, Appl. Chem. Eng., 32, 55 (2021)
Song EJ, Kim MJ, Han JI, Choi YJ, Lee YS, Appl. Chem. Eng., 30, 160 (2019)
Park Y, Kim W, Monllor-Satoca DN, Tachikawa T, Majima T, Choi W, J. Phys. Chem. Lett., 4, 189 (2013)
Pellegrino F, Pellutiè L, Sordello F, Minero C, Ortel E, Hodoroaba VD, Maurino V, Appl. Catal. B: Environ., 216, 80 (2017)
He Y, Yan Q, Liu X, Dong M, Yang J, J. Photochem. Photobiol. A-Chem., 393, 112400 (2020)
Lee MH, Kim HY, Kim J, Han JT, Lee YS, Woo JS, Carbon Lett., 30, 345 (2020)
Lee DH, Swain B, Shin D, Ahn NK, Park JR, Park KS, Mater. Res. Bull., 109, 227 (2019)
Bharti B, Kumar S, Lee HN, Kumar R, Sci. Rep., 6, 1 (2016)
Mahdi N, Kumar P, Goswami A, Perdicakis B, Shankar K, Sadrzadeh M, Nanomaterials, 9, 1186 (2019)
Kaur S, Singh V, J. Hazard. Mater., 141, 230 (2007)
Zhang Y, Chen Z, Lu Z, Nanomaterials, 8, 261 (2018)
Gordon TR, Cargnello M, Paik T, Mangolini F, Weber RT, Fornasiero P, Murray CB, J. Am. Chem. Soc., 134, 6751 (2012)
Li J, Zhang M, Guan Z, Li Q, He C, Yang J, Appl. Catal. B: Environ., 206, 300 (2017)
He Y, Yan Q, Liu X, Dong M, Yang J, J. Photochem. Photobiol. A-Chem., 393, 112400 (2020)
Kim HY, Ju YW, J. Chem. Eng., 38, 1522 (2021)
Bharti B, Li H, Liu D, Kumar H, Manikandan V, Zha X, Ouyang F, Appl. Phys. A-Mater. Sci. Process., 126, 1 (2020)
Sang Y, Liu H, Umar A, Chem. Pub. Soc. Europe., 7, 559 (2015)
Yang SY, Chen YY, Zheng JG, Cui YJ, J. Environ. Sci., 19, 86 (2007)
Yao N, Huang J, Fu K, Deng X, Ding M, Zhang S, Xu X, Li L, Sci. Rep., 6, 31123 (2016)
Chen Y, Wang Y, Li W, Yang Q, Hou Q, Wei L, Liu L, Huang F, Ju M, Appl. Catal. B: Environ., 210, 352 (2017)
Lee HU, Lee YC, Lee SC, Park SY, Son B, Lee JW, Lim CH, Choi CJ, Choi MH, Lee SY, Chem. Eng. J., 254, 268 (2014)
Minero C, Mariella G, Maurino V, Pelizzetti E, Langmuir, 16, 2632 (2000)
Lv K, Cheng B, Yu J, Liu G, Phys. Chem. Chem. Phys., 14, 5349 (2012)
Liu J, Xie F, Li R, Li T, Jia Z, Wang Y, Wang Y, Zhang X, Fan C, Mater. Sci. Semicond. Process, 97, 1 (2019)
Liu Q, Wang F, Lin H, Xie Y, Tong N, Lin J, Zhang X, Zhang Z, Wang X, Catal. Sci. Technol., 8, 4399 (2018)
Zhang Y, Chen Z, Lu Z, Nanomaterials, 8, 261 (2018)
Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier WF, Appl. Catal. B: Environ., 32, 215 (2001)
Bai BC, Im JS, Kim JG, Lee YS, Appl. Chem. Eng., 21, 29 (2010)
Jeon HW, Jeong MG, An BY, Hong MS, Seong SH, Lee GD, Clean Technol., 26, 311 (2020)
Zhang D, Li J, Wang Q, Wu Q, J. Mater. Chem. A, 1, 8622 (2013)
Huang F, Chen L, Wang H, Feng T, Yan Z, J. Electrost., 70, 43 (2012)
Li C, Sun Z, Ma R, Xue Y, Zheng S, Microporous Mesoporous Mater., 243, 281 (2017)
Tian J, Wang J, Dai J, Wang X, Yin Y, Surf. Coat. Technol., 204, 723 (2009)
Amran SNBS, Wongso V, Halim NSA, Husni MK, Sambudi NS, Wirzal MDH, J. Asian Ceram. Soc., 7, 321 (2019)
Huang DG, Liao SJ, Liu JM, Dang Z, Petrik L, J. Photochem. Photobiol. A-Chem., 184, 282 (2006)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로